Logarithms

Find, giving your answer to 3 significant figures where appropriate, the value of x for which

(a) $3^x = 5$,	(3)
(b) $\log_2(2x+1) - \log_2 x = 2$.	(-)
Solve	(4)
(a) $5^x = 8$, giving your answers to 3 significant figures,	(3)
(b) $\log_2 (x+1) - \log_2 x = \log_2 7.$	(3)
(i) Write down the value of $\log_6 36$.	(1)
(ii) Express $2 \log_a 3 + \log_a 11$ as a single logarithm to base <i>a</i> .	(3)
Solve the equation $5^x = 17$, giving your answer to 3 significant figures.	(3)
(<i>a</i>) Find, to 3 significant figures, the value of <i>x</i> for which $8^x = 0.8$.	(2)
(b) Solve the equation	
$2\log_3 x - \log_3 7x = 1.$	(4)
Given that a and b are positive constants, solve the simultaneous equations	
a = 3b,	
$\log_3 a + \log_3 b = 2.$	
Give your answers as exact numbers.	(6)
(a) Find, to 3 significant figures, the value of x for which $5^x = 7$.	(2)

(4)

(b) Solve the equation $5^{2x} - 12(5^x) + 35 = 0$.

Given that 0 < x < 4 and

$$\log_5 (4 - x) - 2 \log_5 x = 1,$$

find the value of *x*.

(6)

(*a*) Find the value of *y* such that

$$\log_2 y = -3.$$

(*b*) Find the values of *x* such that

$$\frac{\log_2 32 + \log_2 16}{\log_2 x} = \log_2 x.$$
(5)

(*a*) Find the positive value of *x* such that

$$\log_x 64 = 2.$$

(b) Solve for x

$$\log_2 (11 - 6x) = 2 \log_2 (x - 1) + 3.$$

(*a*) Given that

$$2\log_3(x-5) - \log_3(2x-13) = 1,$$

show that $x^2 - 16x + 64 = 0$.

(5)

(2)

(2)

(2)

(2)

(6)

- (b) Hence, or otherwise, solve $2 \log_3 (x-5) \log_3 (2x-13) = 1$.
- (a) Sketch the graph of $y = 7^x$, $x \in \mathbb{R}$, showing the coordinates of any points at which the graph crosses the axes.
- (*b*) Solve the equation

$$7^{2x} - 4(7^x) + 3 = 0,$$

giving your answers to 2 decimal places where appropriate.

(6)

Find, giving your answer to 3 significant figures where appropriate, the value of x for which

- (*a*) $5^x = 10$,
- (2) $\log_3(x-2) = -1$.

(2)