

$$a^{m} \times a^{n} = a^{m+n}$$

$$a^{m} \div a^{n} = a^{m-n}$$

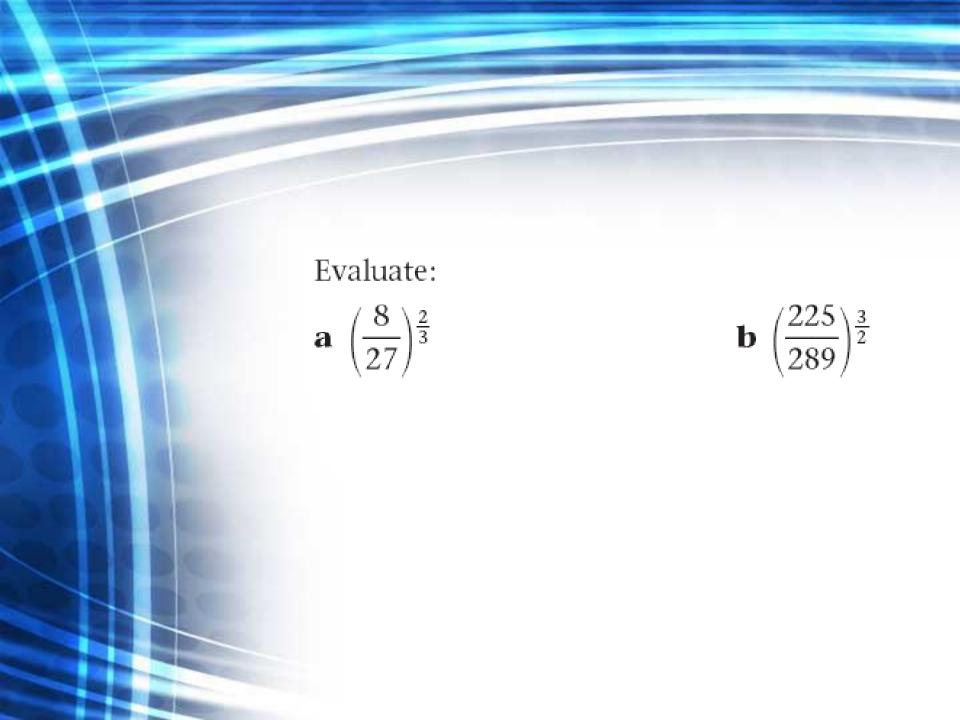
$$a^{-m} = \frac{1}{a^{m}}$$

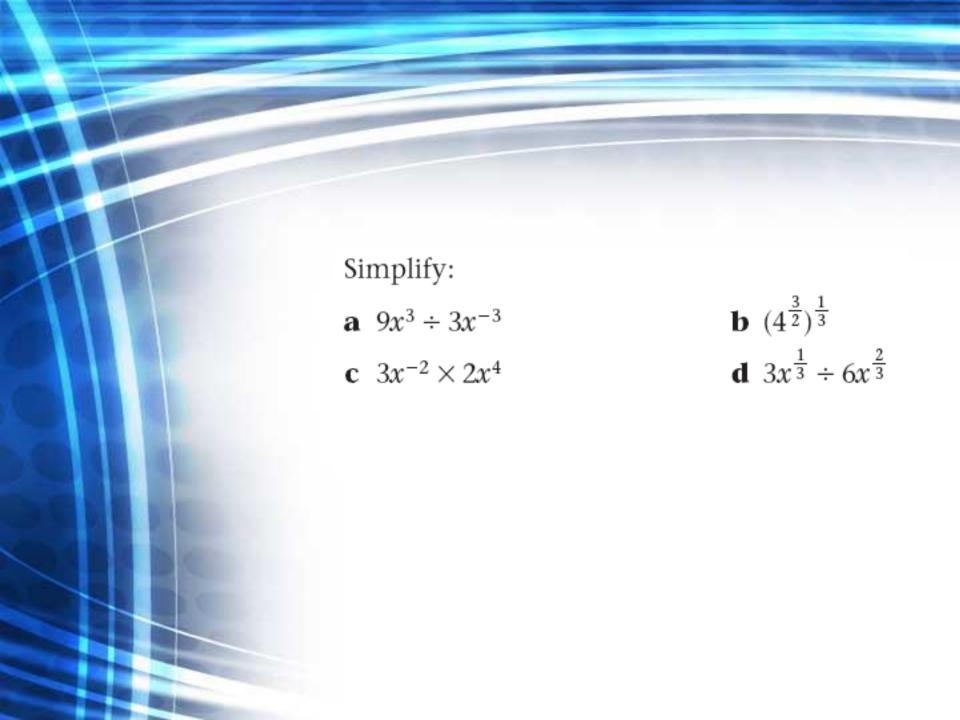
$$a^{\frac{1}{m}} = \sqrt[m]{a}$$

$$a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

$$(a^m)^n = a^{mn}$$

$$a^0 = 1$$



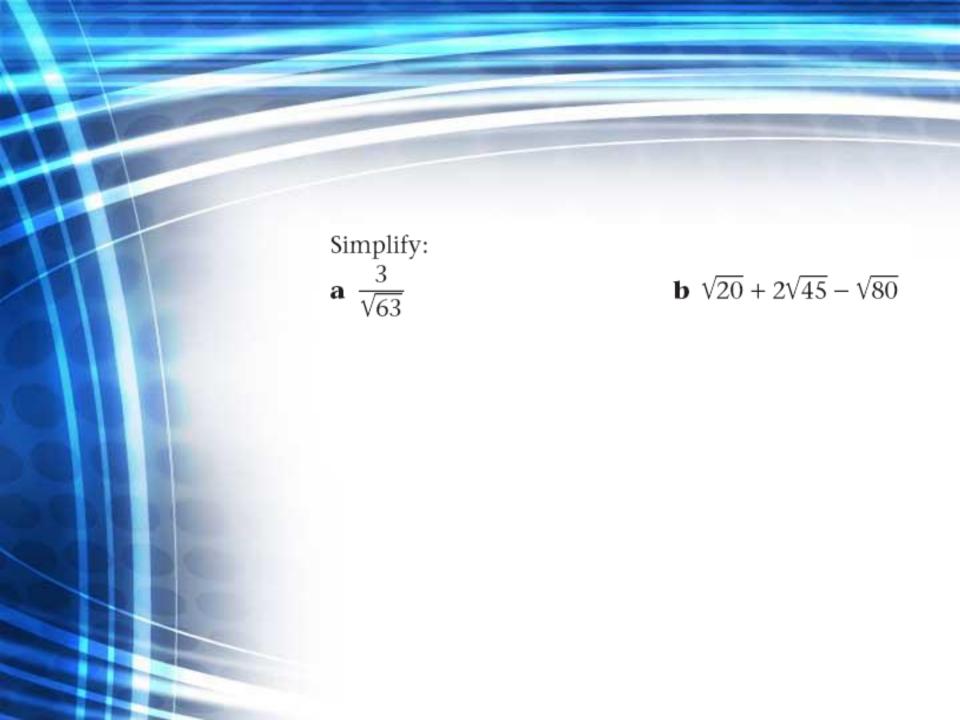


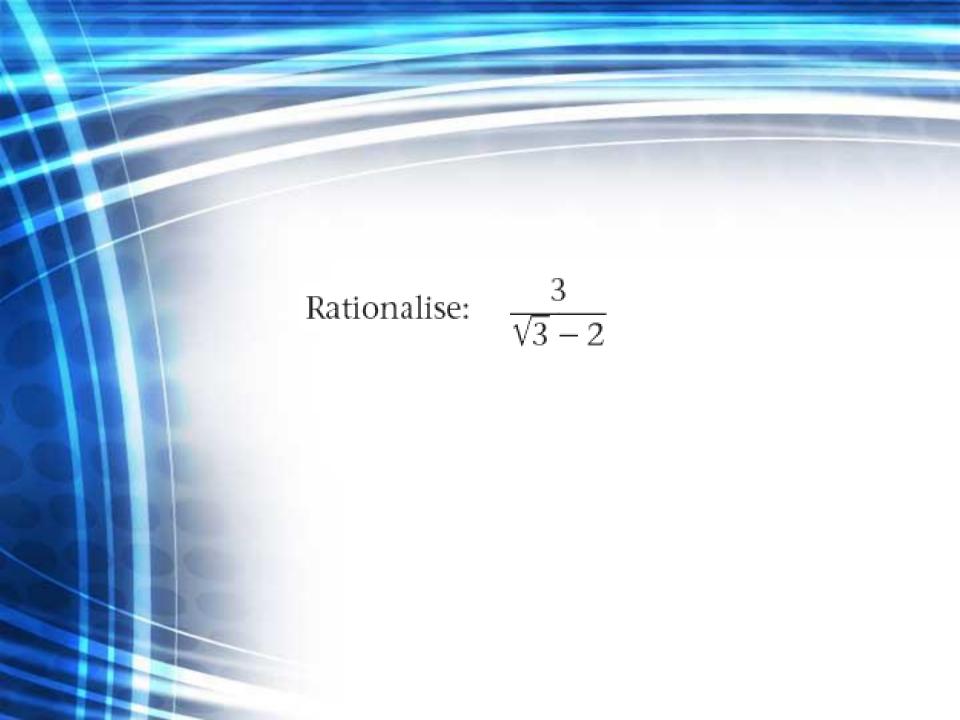
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

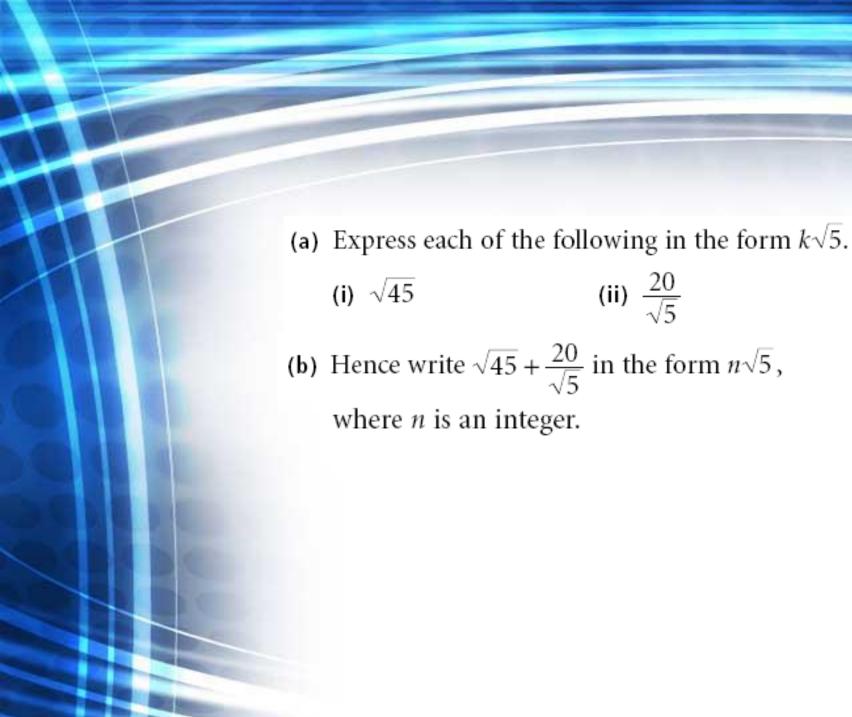
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

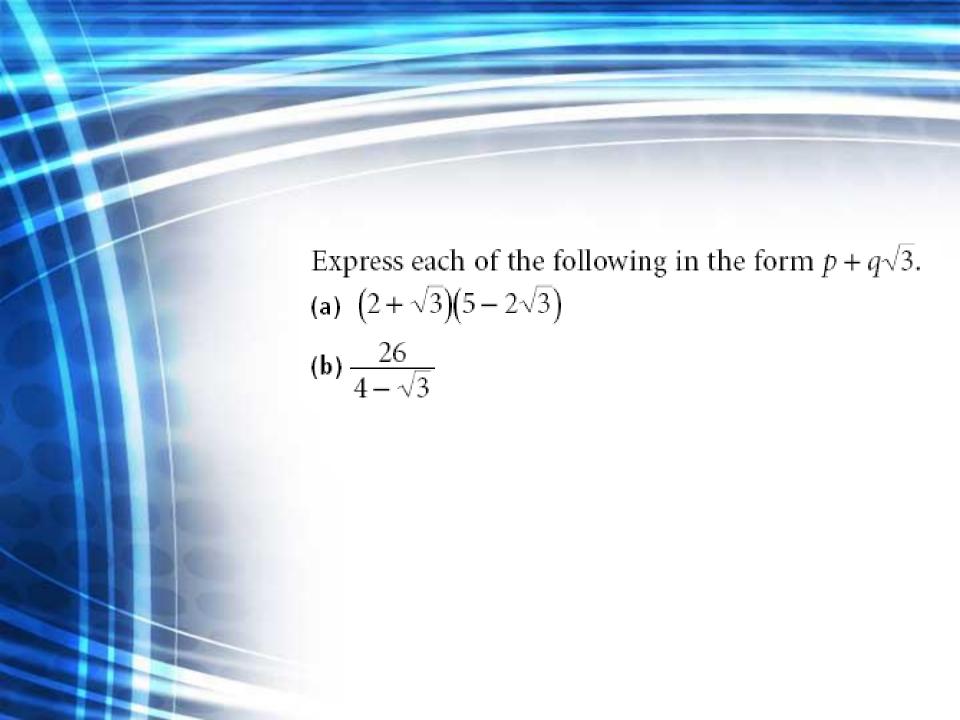
The rules to rationalise surds are:

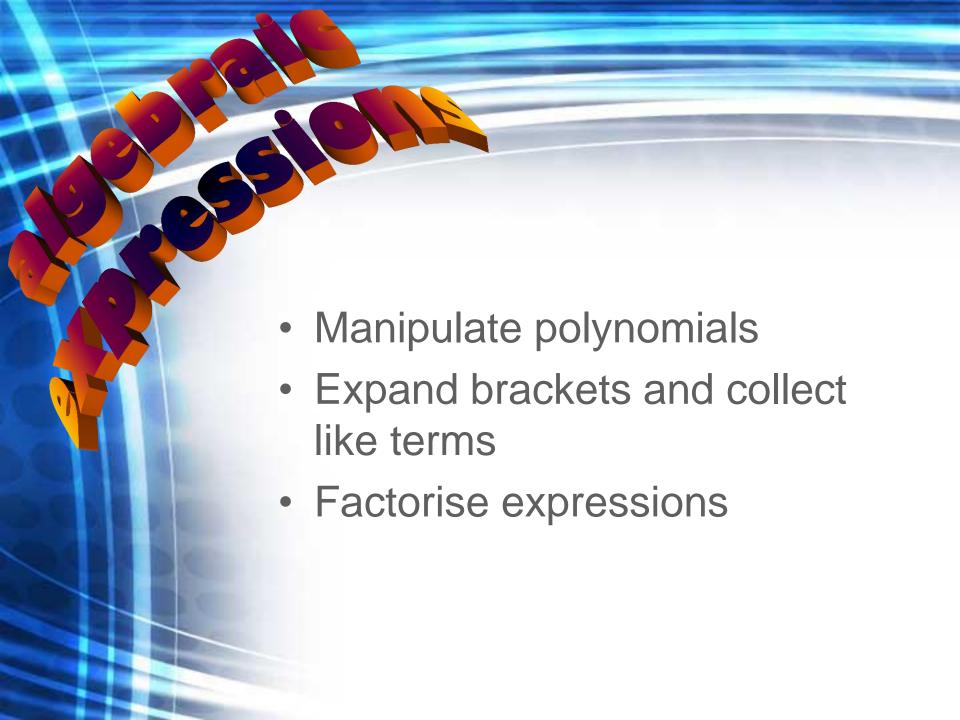
- Fractions in the form $\frac{1}{\sqrt{a}}$, multiply the top and bottom by \sqrt{a} .
- Fractions in the form $\frac{1}{a+\sqrt{b}}$, multiply the top and bottom by $a-\sqrt{b}$.
- Fractions in the form $\frac{1}{a-\sqrt{b}}$, multiply the top and bottom by $a+\sqrt{b}$.

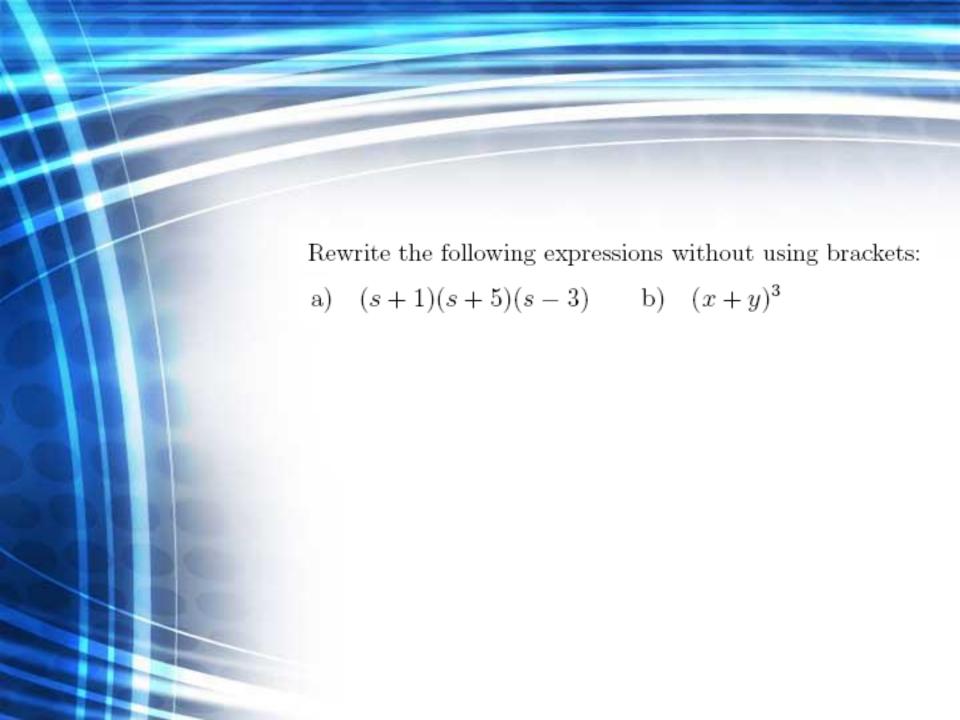


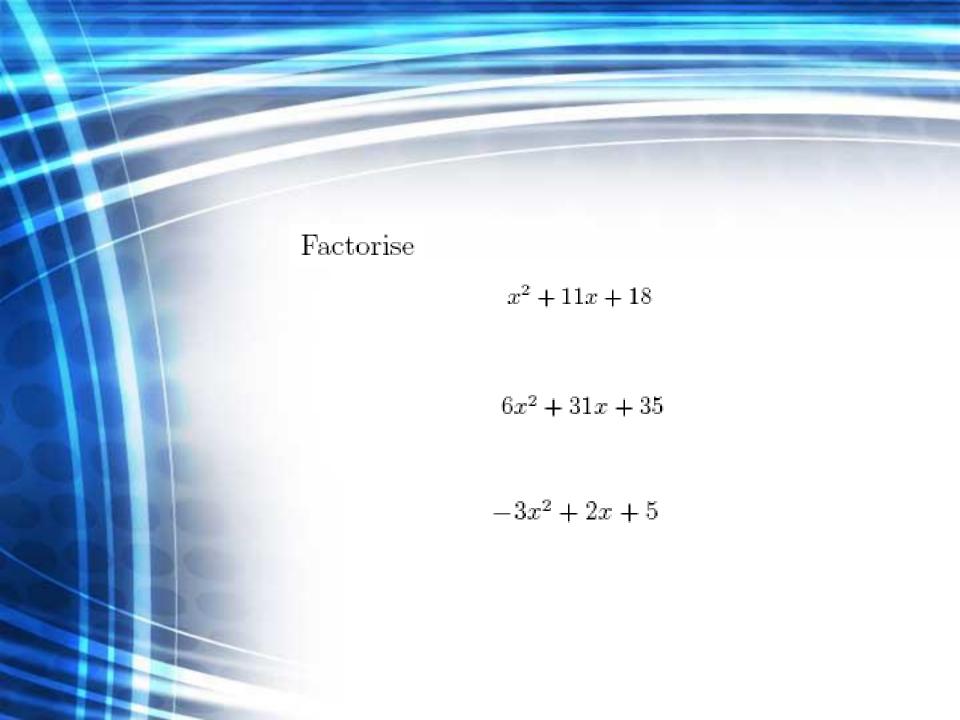


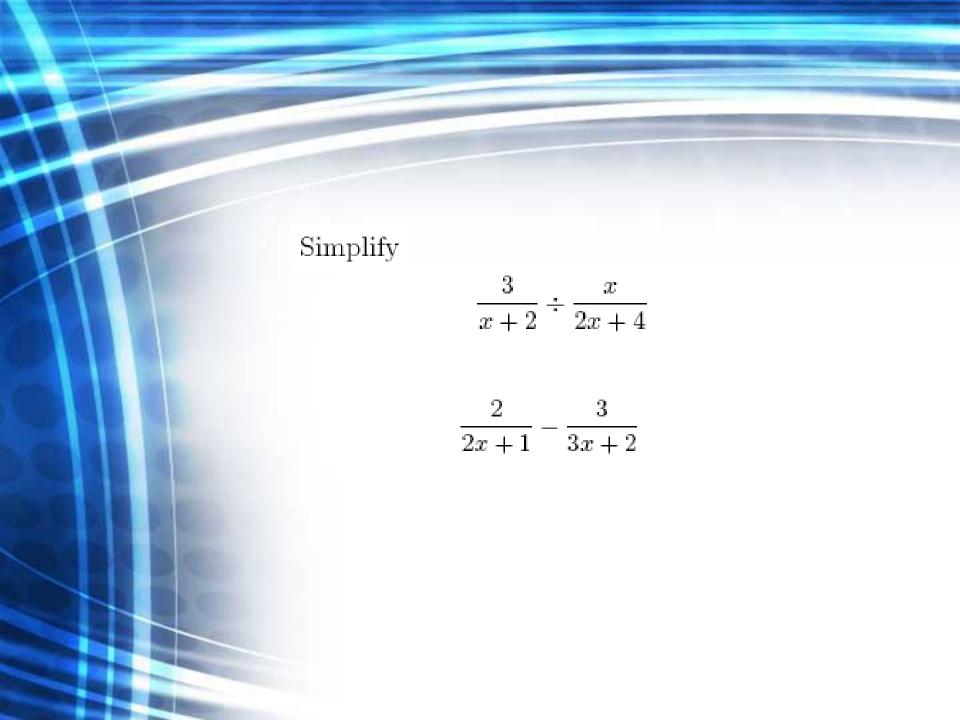


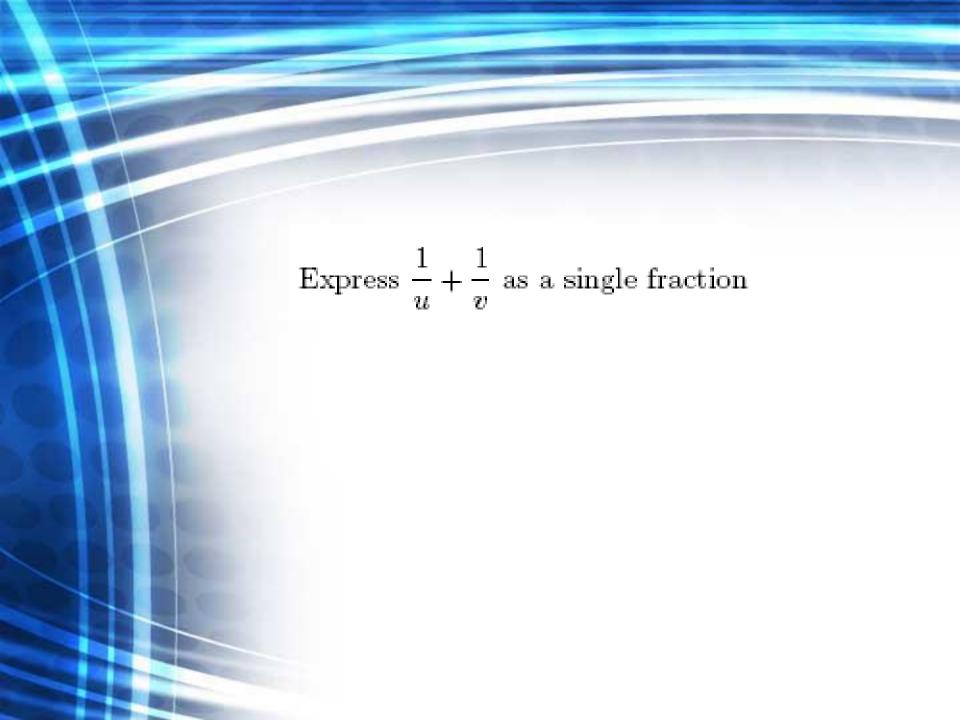


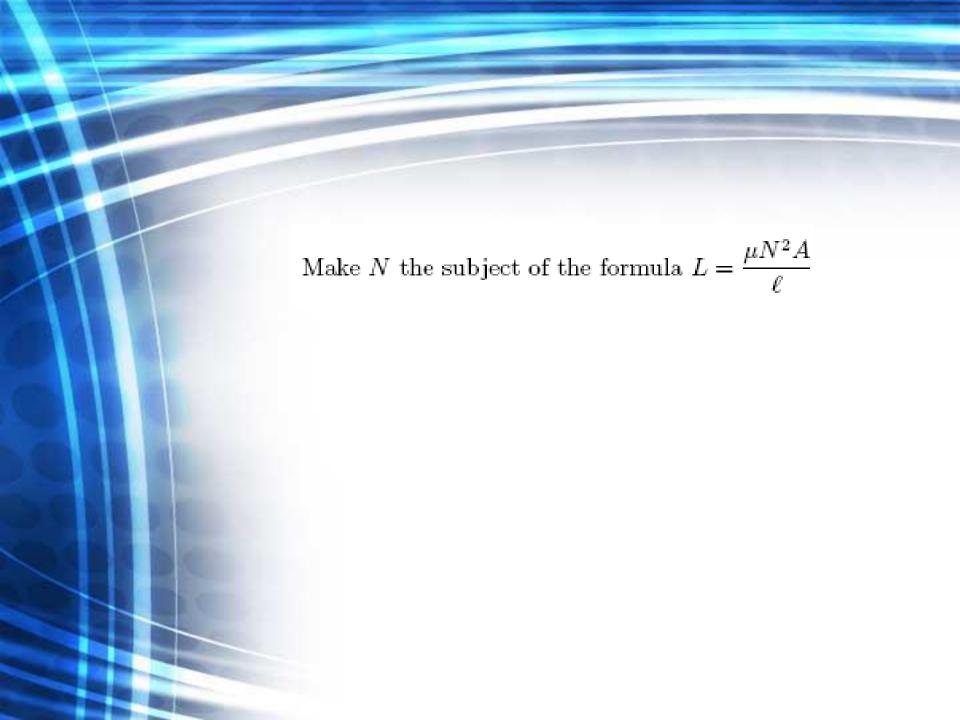


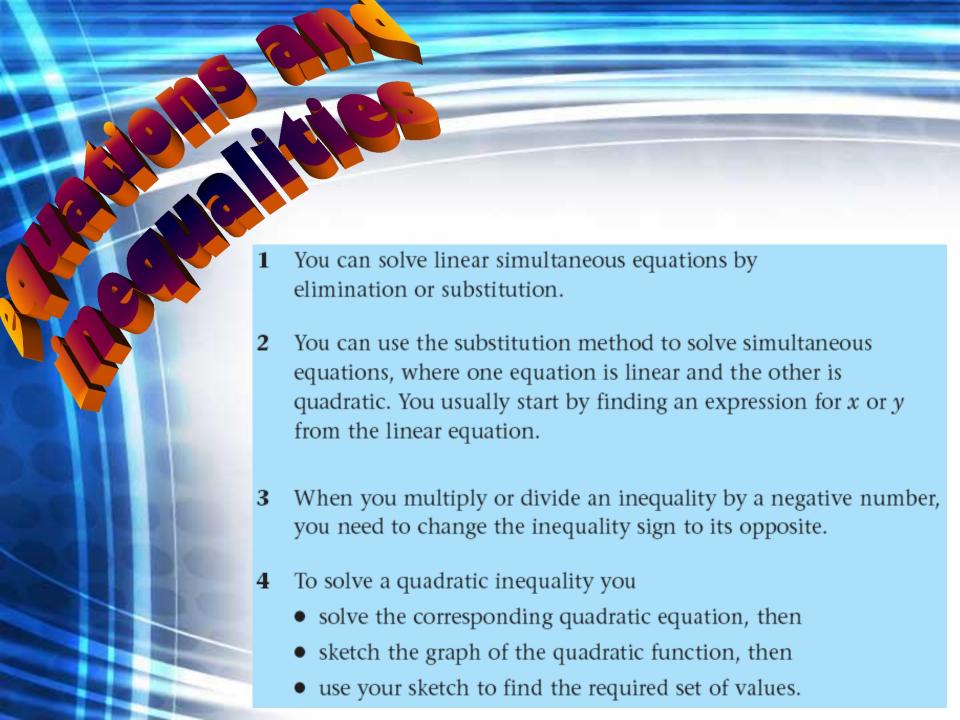


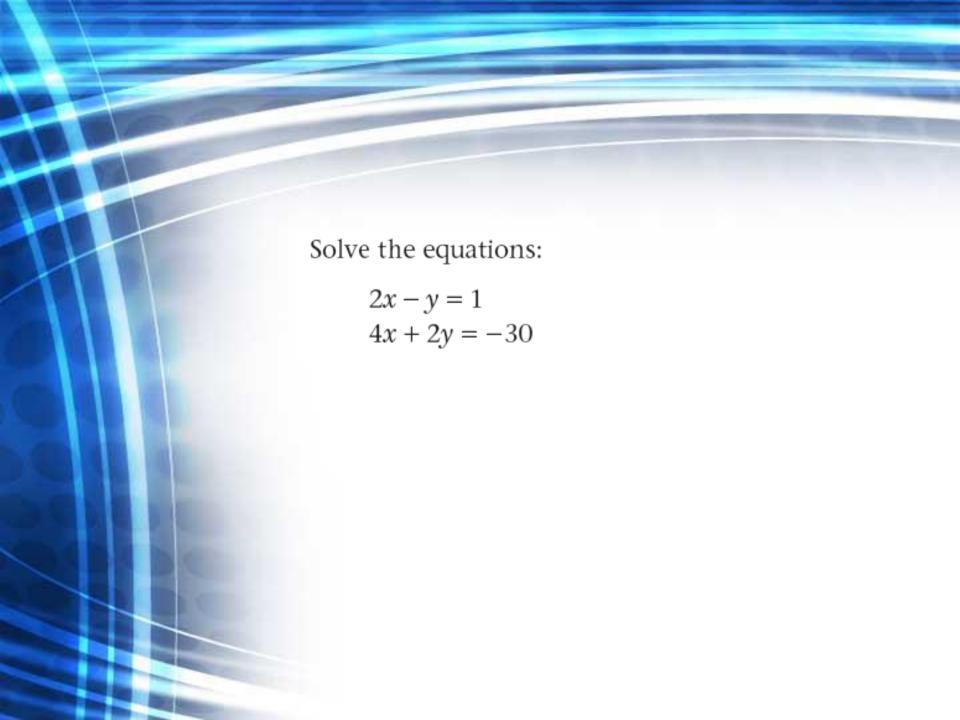


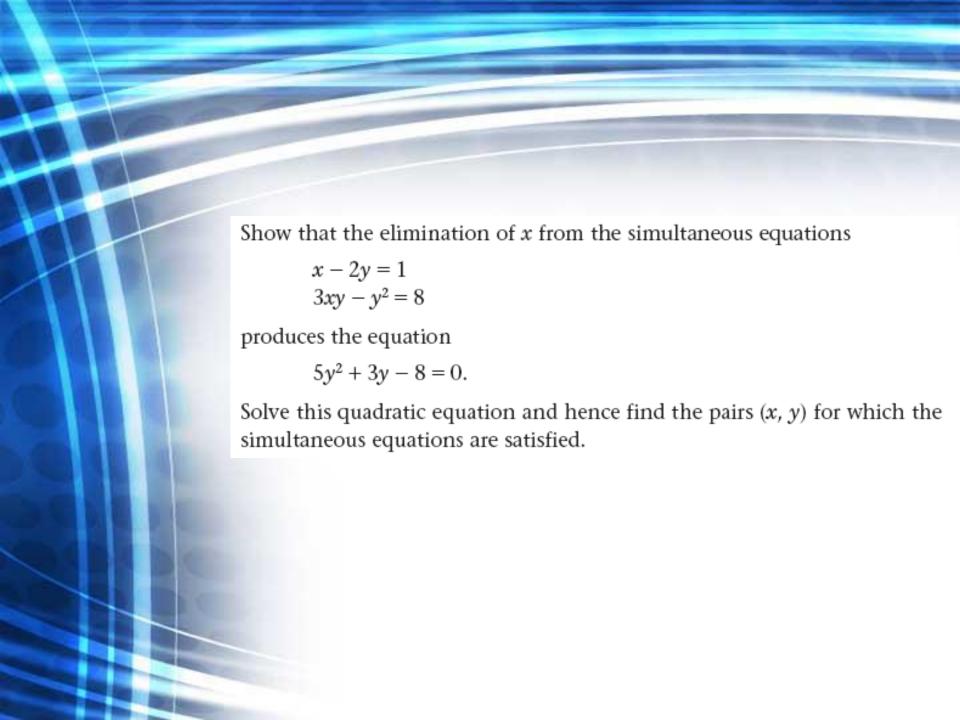


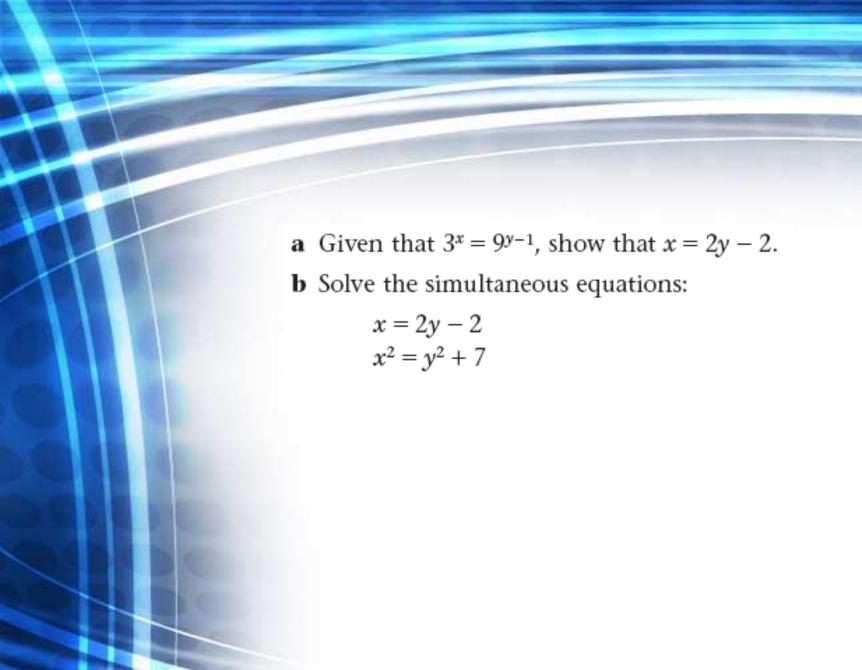


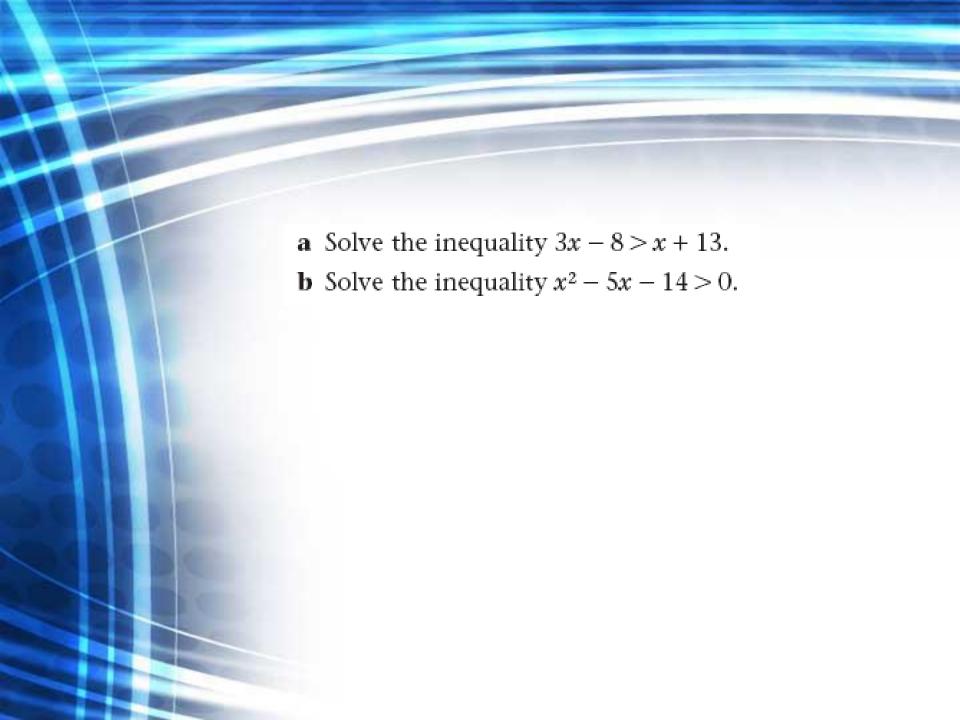


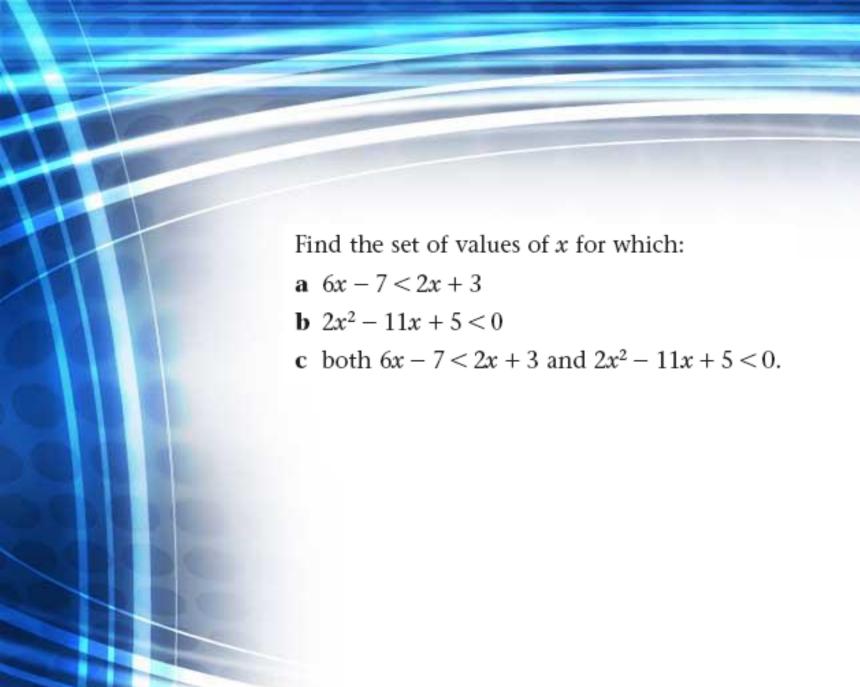


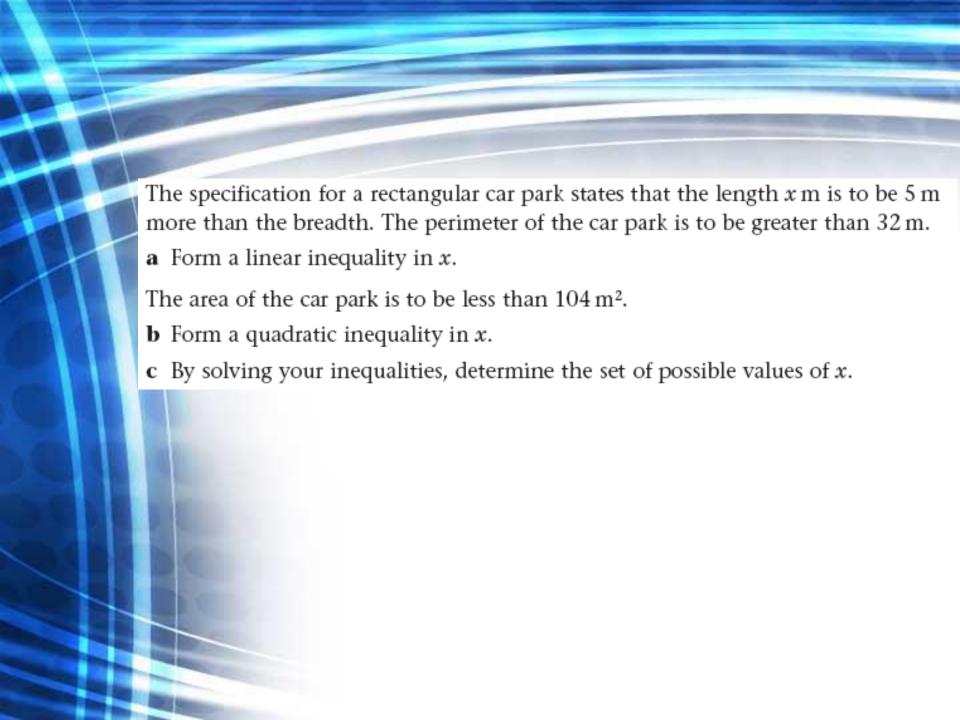


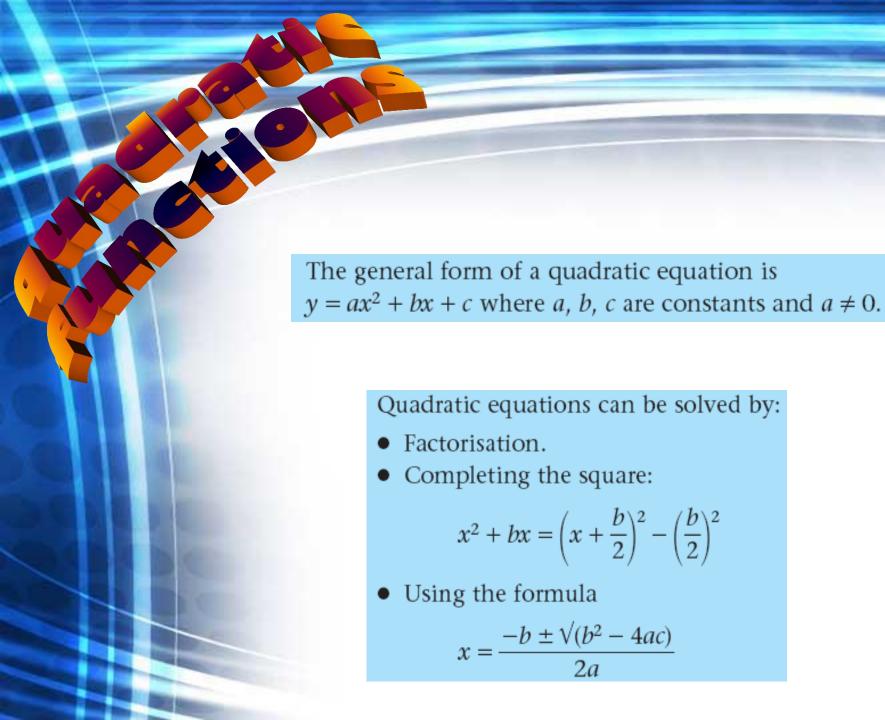


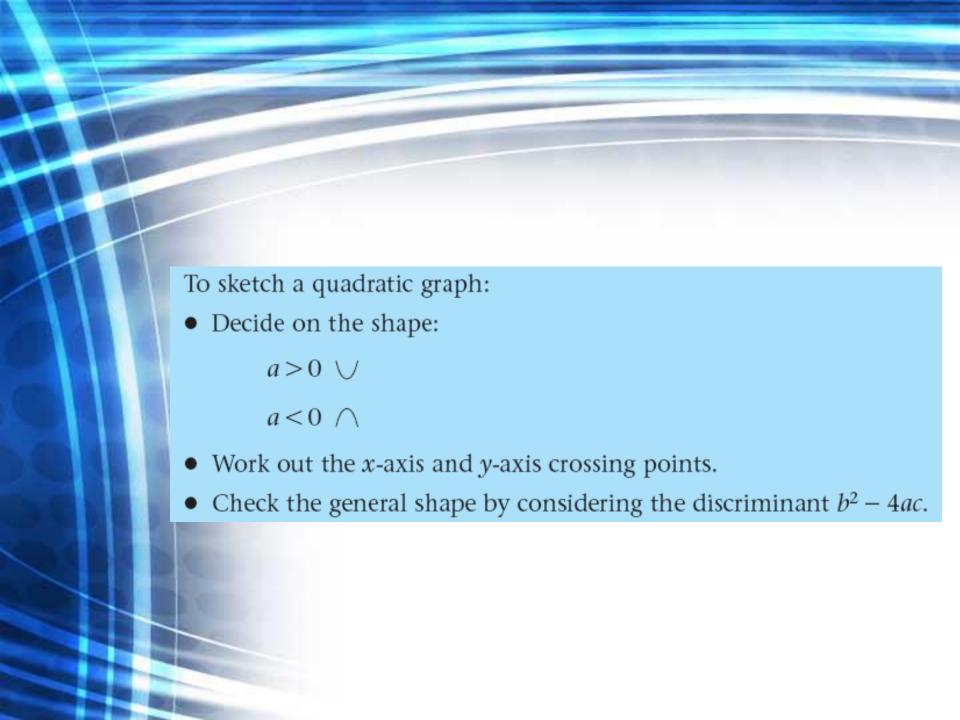








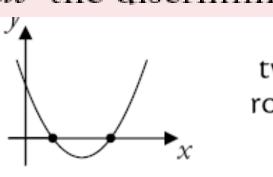




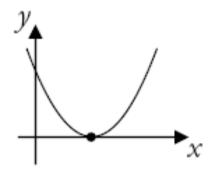
The Discriminant

Given $ax^2 + bx + c$, we call $b^2 - 4ac$ the discriminant.

If $b^2 - 4ac > 0$, the roots are real and unequal (distinct).

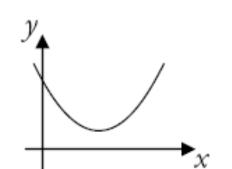


If $b^2 - 4ac = 0$, the roots are real and equal (i.e. a repeated root).

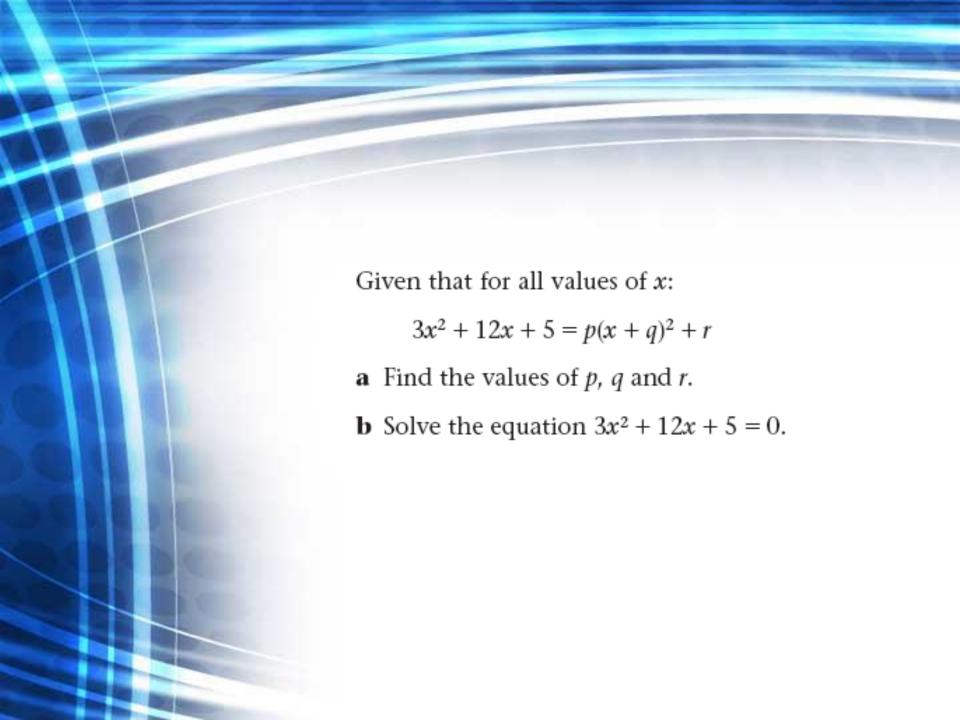


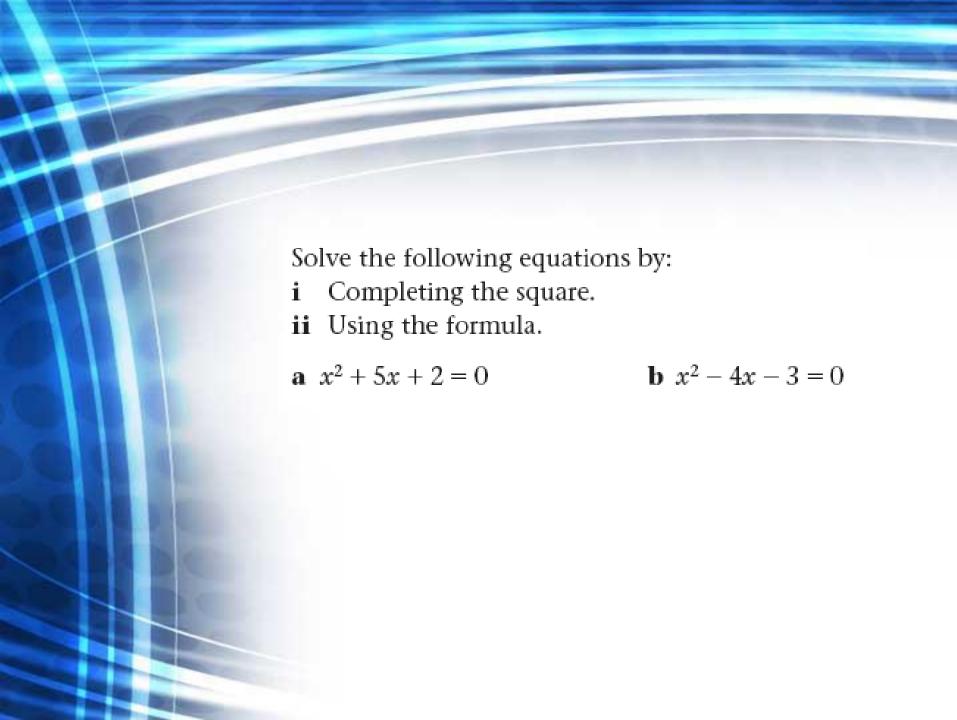
one root

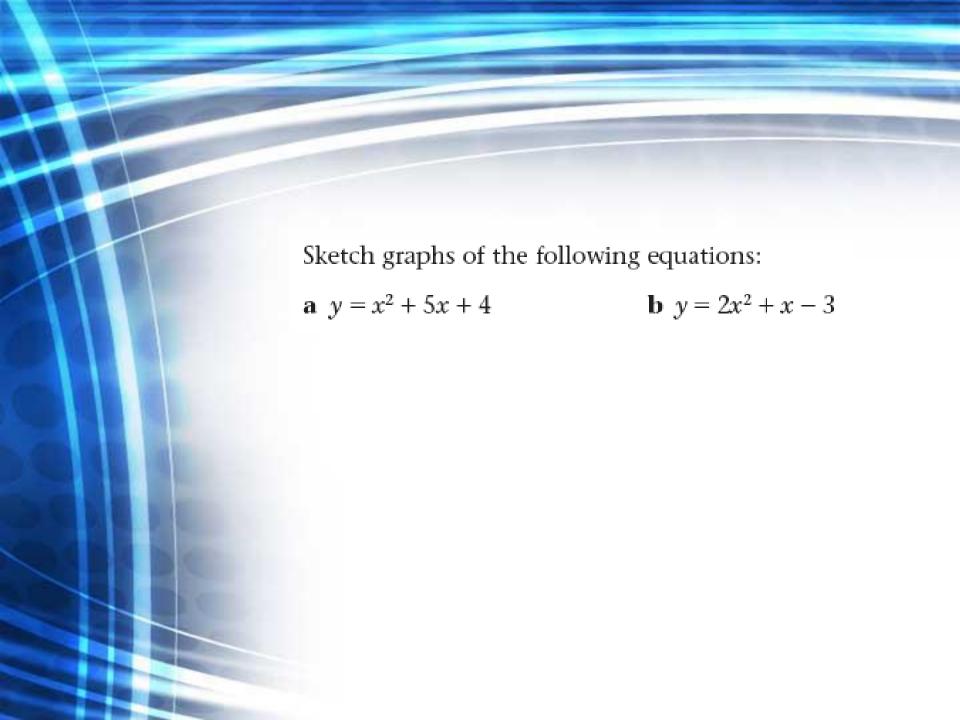
If $b^2 - 4ac < 0$, the roots are not real; they do not exist.

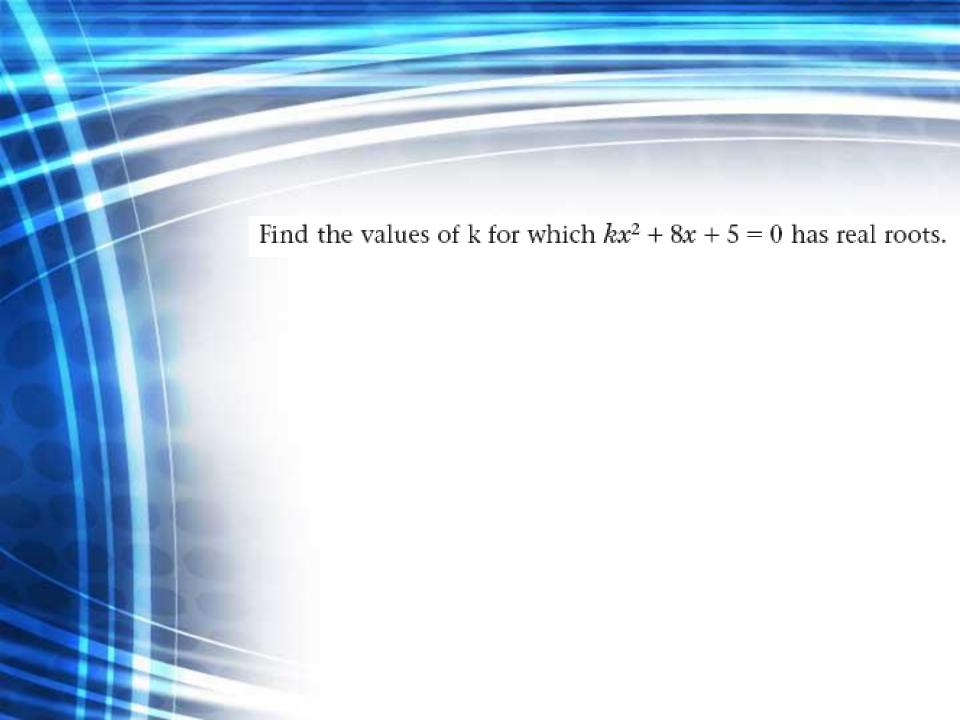


no real roots

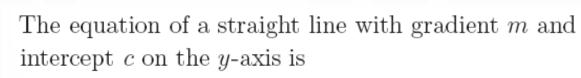








Mid-Point Between Two Points $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$ Length Between Two Points $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ Definition Of Gradient $\text{Gradient} = \frac{\text{Difference in } y}{\text{Difference in } x} = \frac{y_2 - y_1}{x_2 - x_1}$ Perpendicular Lines $m_1 \times m_2 = -1$



$$y = mx + c$$
.

The equation of a straight line with gradient m, passing through the point (x_1, y_1) , is

$$y - y_1 = m(x - x_1).$$

The equation of a straight line passing through the two points (x_1, y_1) and (x_2, y_2) is

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1} \,.$$

Shifts
For c>0,
to obtain the graph of:

to outline and grapes on		
f(x)+c	shift the graph of f(x)	upward c units
f(x)-c	shift the graph of f(x)	downward c units
f(x+c)	shift the graph of f(x)	left c units
f(x-c)	shift the graph of f(x)	right c units

Reflections		
To obtain the graph of:		
-f(x)	reflect the graph of $f(x)$	about the x-axis
f(-x)	reflect the graph of f(x)	about the y-axis

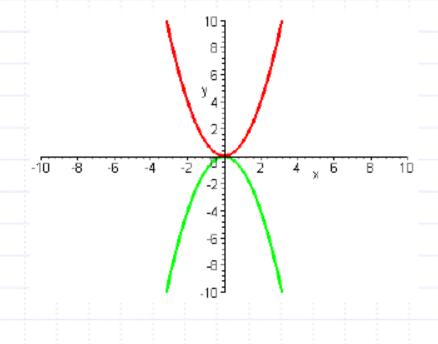
Stretches and compressions		
For c>1,		
to obtain the graph of		

lo oplain ine grapn oi.

<u> </u>		
cf(x)	stretch the graph of $f(x)$	vertically by a factor of c
(1/c)f(x)	compress the graph of $f(x)$	vertically by a factor of c
f(cx)	compress the graph of $f(x)$	horizontally by a factor of c
f(x/c)	stretch the graph of $f(x)$	horizontally by a factor of c

Transformations: Quadratic Equations

- In the standard graph of a quadratic equation, y = ax², the parabola opens upward when a is positive.
- When a is negative it opens downward and the graph is reflected (flipped upside down) about the x-axis: y = - x².

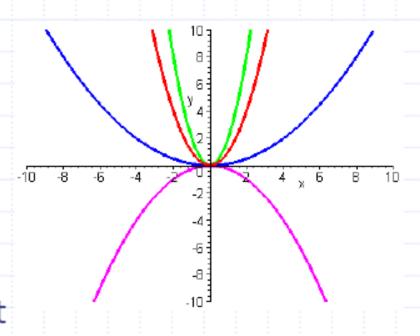


Transformations: Quadratic Equations

- In the standard graph of a quadratic equation y = ax², the opening of the parabola
 - narrows when the value of
 - a increases: $y = x^2$, $y = 2x^2$
 - and widens as a decreases:

$$y = 1/8 x^2$$

The graph is reflected about the x-axis when a is negative: $y = -\frac{1}{4} x^2$



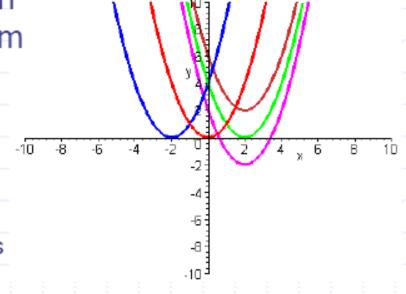
Transformations: Quadratic Equations

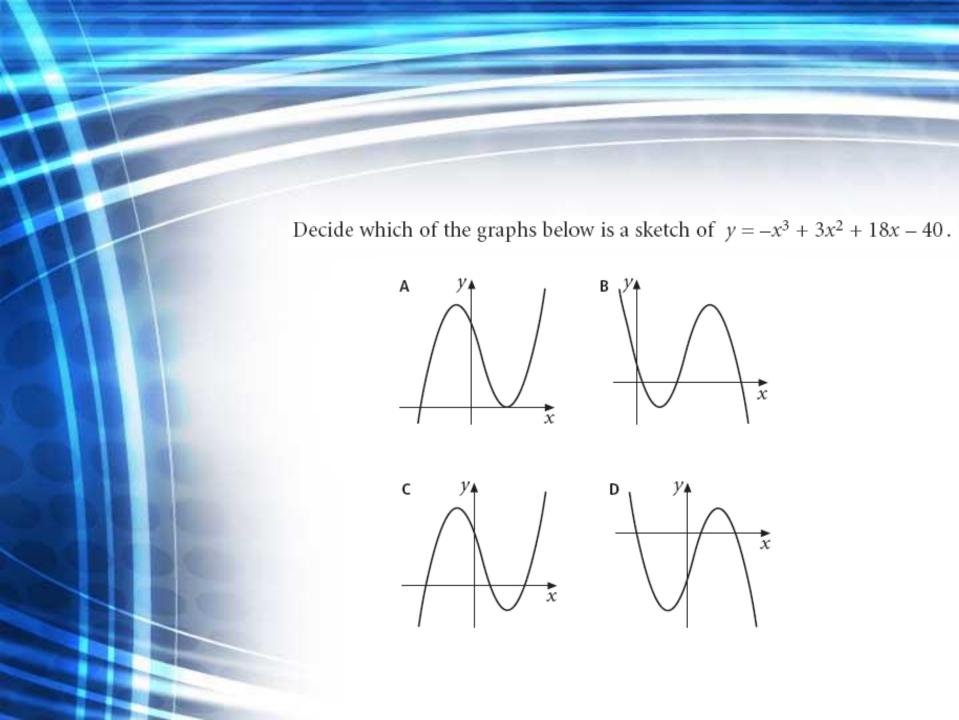
Displaying the quadratic equation in the "complete the square" form of $y = a(x - b)^2 + c$ makes it easy to recognize:

horizontal shifts as b is changed:

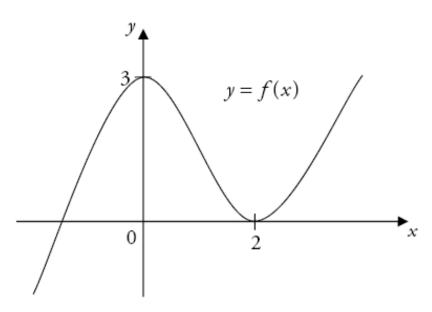
•
$$y = (x - 2)^2 + 2$$
 shifts the graph right two spaces and up two spaces,

•and
$$y = (x - 2)^2 - 2$$
 shifts the graph right two spaces and down two spaces.





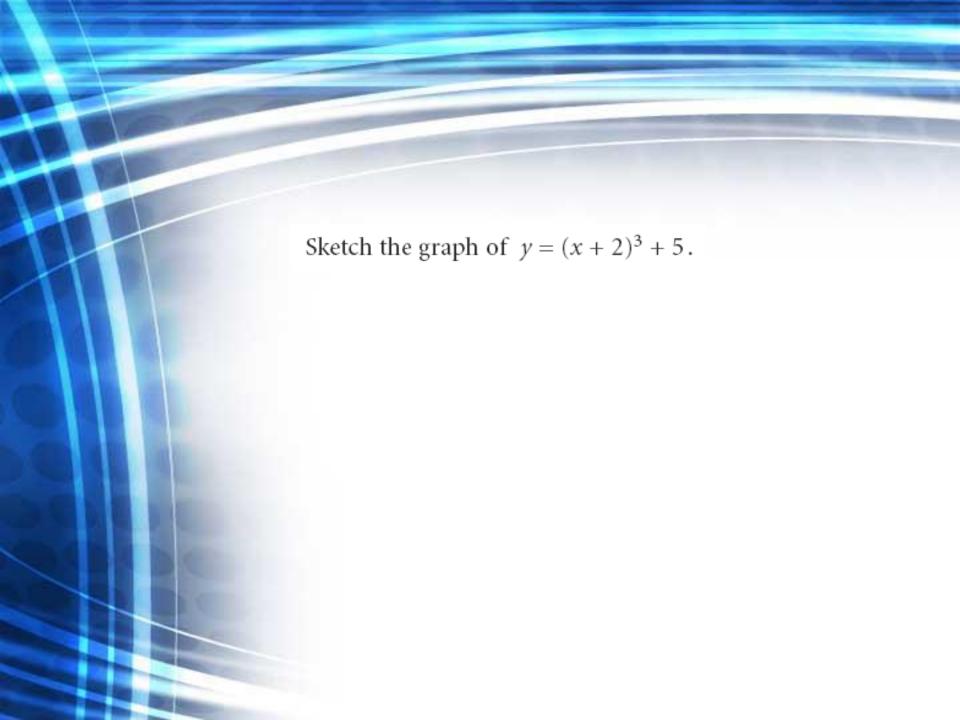
The diagram shows part of the graph of y = f(x).



On separate diagrams, sketch the graphs of:

a)
$$y = -f(x)$$

b)
$$y = f(x + 4)$$



An arithmetic progression, or AP, is a sequence where each new term after the first is obtained by adding a constant d, called the *common difference*, to the preceding term. If the first term of the sequence is a then the arithmetic progression is

$$a, a+d, a+2d, a+3d, \dots$$

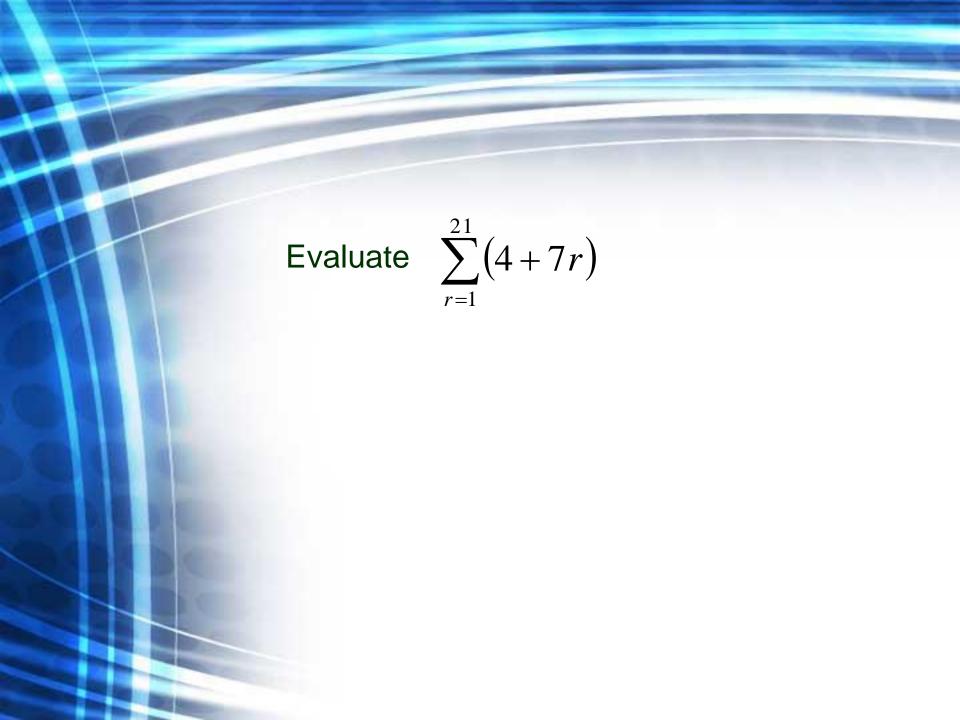
where the *n*-th term is a + (n-1)d.

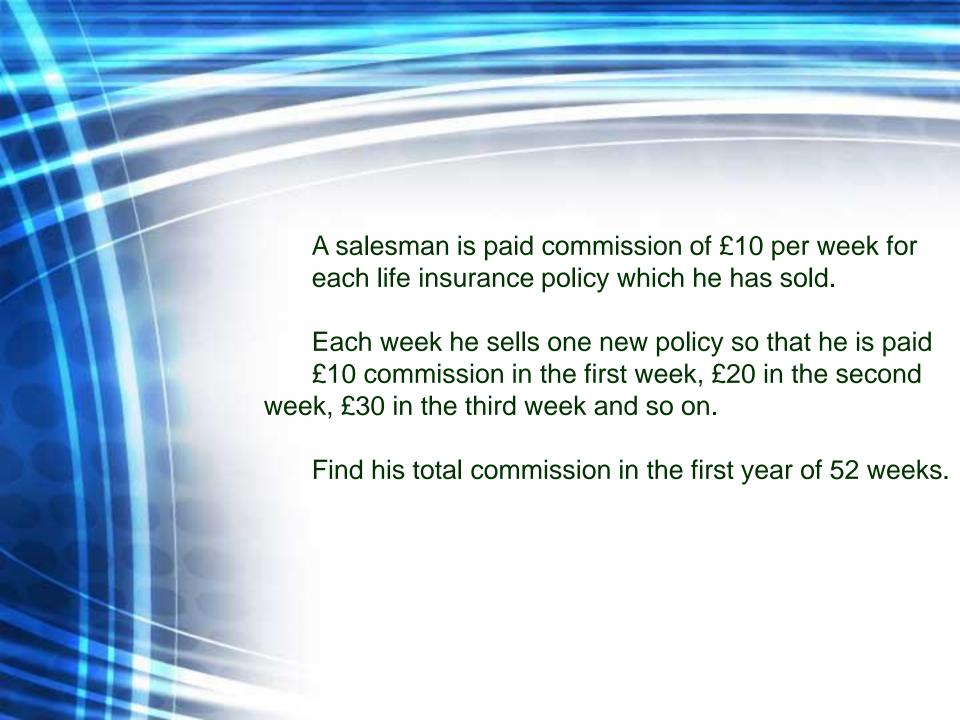
The sum of the terms of an arithmetic progression gives an arithmetic series. If the starting value is a and the common difference is d then the sum of the first n terms is

$$S_n = \frac{1}{2}n(2a + (n-1)d).$$

If we know the value of the last term ℓ instead of the common difference d then we can write the sum as

$$S_n = \frac{1}{2}n(a+\ell).$$





A sequence a_1 , a_2 , a_3 , . . . is defined by $a_1 = 3$, $a_{n+1} = 3a_n - 5, \qquad n \ge 1.$ Find the value a_2 and the value of a_3 . (a) Calculate the value of $\sum_{r=0}^{3} a_{r}$ *(b)*

