Co-ordinate Geometry

The straight line l_1 has equation y = 3x - 6.

The straight line l_2 is perpendicular to l_1 and passes through the point (6, 2).

(a) Find an equation for l_2 in the form y = mx + c, where m and c are constants.

(3)

The lines l_1 and l_2 intersect at the point C.

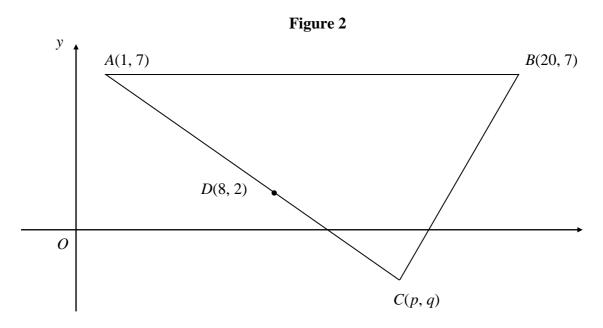
(b) Use algebra to find the coordinates of *C*.

(3)

The lines l_1 and l_2 cross the x-axis at the points A and B respectively.

(c) Calculate the exact area of triangle ABC.

(4)



The points A(1, 7), B(20, 7) and C(p, q) form the vertices of a triangle ABC, as shown in Figure 2. The point D(8, 2) is the mid-point of AC.

(a) Find the value of p and the value of q.

(2)

The line l, which passes through D and is perpendicular to AC, intersects AB at E.

(b) Find an equation for l, in the form ax + by + c = 0, where a, b and c are integers.

(5)

(c) Find the exact x-coordinate of E.

(2)

Given that

$$f(x) = x^2 - 6x + 18, x \ge 0,$$

$f(x) = x^2 - 6x + 18, x \ge 0,$
(a) express $f(x)$ in the form $(x-a)^2 + b$, where a and b are integers. (3)
The curve C with equation $y = f(x)$, $x \ge 0$, meets the y -axis at P and has a minimum point at Q .
(b) Sketch the graph of C , showing the coordinates of P and Q . (4)
The line $y = 41$ meets C at the point R .
(c) Find the x-coordinate of R, giving your answer in the form $p + q\sqrt{2}$, where p and q are integers.
The line l_1 passes through the point $(9, -4)$ and has gradient $\frac{1}{3}$.
(a) Find an equation for l_1 in the form $ax + by + c = 0$, where a , b and c are integers. (3)
The line l_2 passes through the origin O and has gradient -2 . The lines l_1 and l_2 intersect at the point P .
(b) Calculate the coordinates of P. (4)
Given that l_1 crosses the y-axis at the point C ,
(c) calculate the exact area of $\triangle OCP$. (3)
The line <i>L</i> has equation $y = 5 - 2x$.
(a) Show that the point $P(3,-1)$ lies on L . (1)
(b) Find an equation of the line perpendicular to L , which passes through P . Give your answer in the form $ax + by + c = 0$, where a , b and c are integers. (4)

The line l_1 passes through the points $P(-1, 2)$ and $Q(11, 8)$.	
(a) Find an equation for l_1 in the form $y = mx + c$, where m and c are constants.	(4)
The line l_2 passes through the point $R(10, 0)$ and is perpendicular to l_1 . The lines l_1 and intersect at the point S .	d <i>l</i> 2
(b) Calculate the coordinates of S.	(5)
(c) Show that the length of RS is $3\sqrt{5}$.	(2)
(d) Hence, or otherwise, find the exact area of triangle PQR.	(4)
The line l_1 has equation $y = 3x + 2$ and the line l_2 has equation $3x + 2y - 8 = 0$.	
(a) Find the gradient of the line l_2 .	(2)
The point of intersection of l_1 and l_2 is P .	
(b) Find the coordinates of P.	(3)
The lines l_1 and l_2 cross the line $y = 1$ at the points A and B respectively.	
(c) Find the area of triangle ABP.	(4)
The point $A(-6, 4)$ and the point $B(8, -3)$ lie on the line L .	
(a) Find an equation for L in the form $ax + by + c = 0$, where a, b and c are integers.	(4)
(b) Find the distance AB, giving your answer in the form $k\sqrt{5}$, where k is an integer.	(3)

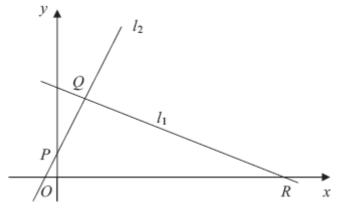


Figure 2

The points Q(1, 3) and R(7, 0) lie on the line l_1 , as shown in Figure 2.

The length of QR is $a\sqrt{5}$.

(a) Find the value of a.

(3)

The line l_2 is perpendicular to l_1 , passes through Q and crosses the y-axis at the point P, as shown in Figure 2. Find

(b) an equation for l_2 ,

(5)

(c) the coordinates of P,

(1)

(d) the area of ΔPQR .

(4)

The line l_1 passes through the point A(2, 5) and has gradient $-\frac{1}{2}$.

(a) Find an equation of l_1 , giving your answer in the form y = mx + c.

(3)

The point B has coordinates (-2, 7).

(b) Show that B lies on l_1 .

(1)

(c) Find the length of AB, giving your answer in the form $k\sqrt{5}$, where k is an integer.

(3)

The point C lies on l_1 and has x-coordinate equal to p.

The length of AC is 5 units.

(d) Show that p satisfies

$$p^2 - 4p - 16 = 0. (4)$$

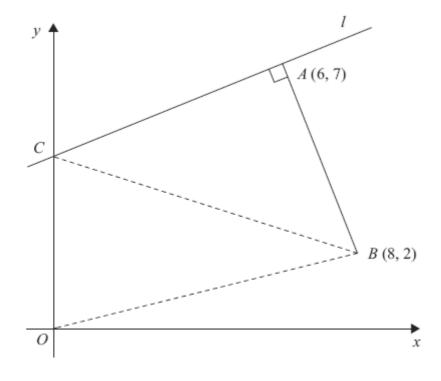


Figure 1

The points A and B have coordinates (6, 7) and (8, 2) respectively.

The line l passes through the point A and is perpendicular to the line AB, as shown in Figure 1.

(a) Find an equation for l in the form ax + by + c = 0, where a, b and c are integers. (4)

Given that l intersects the y-axis at the point C, find

(b) the coordinates of C, (2)

(c) the area of $\triangle OCB$, where O is the origin. (2)

The line l_1 has equation 3x + 5y - 2 = 0.

(a) Find the gradient of l_1 . (2)

The line l_2 is perpendicular to l_1 and passes through the point (3, 1).

(b) Find the equation of l_2 in the form y = mx + c, where m and c are constants. (3)

(a)	Factorise completely $x^3 - 4x$.	(3)	
(b)	Sketch the curve C with equation	(-)	
$y = x^3 - 4x,$			
	showing the coordinates of the points at which the curve meets the axis.	(3)	
The	point A with x-coordinate -1 and the point B with x-coordinate 3 lie on the curve C.		
(c)	Find an equation of the line which passes through A and B , giving your answer in form $y = mx + c$, where m and c are constants.	the (5)	
(d)	Show that the length of <i>AB</i> is $k\sqrt{10}$, where <i>k</i> is a constant to be found.	(2)	
(a)	Find an equation of the line joining $A(7, 4)$ and $B(2, 0)$, giving your answer in the for $ax + by + c = 0$, where a , b and c are integers.	orm (3)	
(b)	Find the length of AB, leaving your answer in surd form.	(2)	
The	e point C has coordinates $(2, t)$, where $t > 0$, and $AC = AB$.		
(c)	Find the value of t .	(1)	
(d)	Find the area of triangle <i>ABC</i> .	(1)(2)	
The	e line L_1 has equation $2y - 3x - k = 0$, where k is a constant.		
Giv	en that the point $A(1, 4)$ lies on L_1 , find		
(a)	the value of k ,	(1)	
(b)	the gradient of L_1 .	(2)	
The	e line L_2 passes through A and is perpendicular to L_1 .		
(c)	Find an equation of L_2 giving your answer in the form $ax + by + c = 0$, where a , b an are integers.	.d <i>c</i>	
The	e line L_2 crosses the x-axis at the point B .	(4)	
(d)	Find the coordinates of <i>B</i> .	(2)	
(e)	Find the exact length of <i>AB</i> .	(2)	

The points P and Q have coordinates (-1, 6) and (9, 0) respectively.

The line l is perpendicular to PQ and passes through the mid-point of PQ.

Find an equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(5)