Pure Mathematics – Coordinate Geometry

1.	A line l_1 has equation $5y + 4x = 3$.			
	(i) Find the gradient of the line. [1]			
	(ii)	Find the equation of the line l_2 which is parallel to l_1 and passes through the po (1, -2).	int [3]	
2.	Desc	cribe fully the curve whose equation is $x^2 + y^2 = 4$.	[2]	
3.	The coordinates of two points are A (-1, -3) and B (5, 7). Calculate the equation of the perpendicular bisector of AB.		he [4]	
4.	Shov	w that the line $y = 3x - 10$ is a tangent to the circle $x^2 + y^2 = 10$.	[4]	
5.	The line $y = 2x - 3$ meets the <i>x</i> -axis at the point P, and the line $3y + 4x = 8$ meets the <i>x</i> -axis at the point Q. The two lines intersect at the point R.			
	(i)	Find the coordinates of R.	[4]	
	(ii)	Find the area of triangle PQR.	[3]	
6.	The equation of a circle is $x^2 + y^2 - 4x + 2y = 15$			
	(i)	Find the coordinates of the centre C of the circle, and the radius of the circle.	[3]	
	(ii)	Show that the point P $(4, -5)$ lies on the circle.	[1]	
	(iii)	Find the equation of the tangent to the circle at the point P.	[4]	
7.	The coordinates of four points are P (-2, -1), Q (6, 3), R (9, 2) and S (1, -2).			
	(i)	Calculate the gradients of the lines PQ, QR, RS and SP.	[4]	
	(ii)	What name is given to the quadrilateral PQRS?	[1]	
	(iii)	Calculate the length SR.	[2]	
	(iv) Show that the equation of SR is $2y = x - 5$ and find the equation of the line <i>L</i> through Q perpendicular to SR. [5]			
	(v)	Calculate the coordinates of the point T where the line L meets SR.	[3]	
	(vi)	Calculate the area of the quadrilateral PQRS.	[3]	
8.	AB is the diameter of a circle. A is (1, 3) and B is (7, -1).			
	(i)	Find the coordinates of the centre C of the circle.	[2]	
	(ii)	Find the radius of the circle.	[2]	
	(iii)	Find the equation of the circle.	[2]	
	(iv)	(iv) The line $y + 5x = 8$ cuts the circle at A and again at a second point D. Calculate the coordinates of D. [4]		
	(v)	Prove that the line AB is perpendicular to the line CD.	[3]	

Total 60 marks

Solutions

- 1. (i) 5y + 4x = 3. 5y = -4x + 3 $y = -\frac{4}{5}x + \frac{3}{5}$ Gradient of line $= -\frac{4}{5}$
 - (ii) l₂ is parallel to l₁, so it has gradient $-\frac{4}{5}$. Equation of line is $y - (-2) = -\frac{4}{5}(x-1)$ 5(y+2) = -4(x-1) 5y + 10 = -4x + 45y + 4x + 6 = 0
- 2. The curve is a circle, centre O and radius 2.
- 3. Gradient of AB = $\frac{y_1 y_2}{x_1 x_2} = \frac{-3 7}{-1 5} = \frac{-10}{-6} = \frac{5}{3}$ Gradient of line perpendicular to AB = $-\frac{3}{5}$. The line passes through the midpoint of AB = $\left(\frac{-1 + 5}{2}, \frac{-3 + 7}{2}\right) = (2, 2)$ Equation of line is $y - 2 = -\frac{3}{5}(x - 5)$ 5(y - 2) = -3(x - 2) 5y - 10 = -3x + 65y + 3x = 16
- 4. Substituting y = 3x 10 into $x^{2} + y^{2} = 10$ gives $x^{2} + (3x - 10)^{2} = 10$ $x^{2} + 9x^{2} - 60x + 100 = 10$ $10x^{2} - 60x + 90 = 0$ $x^{2} - 6x + 9 = 0$ $(x - 3)^{2} = 0$

Since the equation has a repeated root, the line meets the circle just once, and so the line is a tangent to the circle.

5. (i) Substituting y = 2x - 3 into 3y + 4x = 8: 3(2x - 3) + 4x = 8 6x - 9 + 4x = 8 $10x = 17^{2}$ $x = 1.7^{2}$ When x = 1.7, $y = 2 \times 1.7 - 3 = 3.4 - 3 = 0.4$ The coordinates of R are (1.7, 0.4) (ii) P is the point on y = 2x - 3 where y = 0, so P is (1.5, Q is the point on 3y + 4x = 8 where y = 0, so Q is (2, Area $= \frac{1}{2} \times base \times height$ $= \frac{1}{2} \times 0.5 \times 0.4$ = 0.1

6. (i)
$$x^{2} + y^{2} - 4x + 2y = 15$$

 $x^{2} - 4x + y^{2} + 2y = 15$
 $(x - 2)^{2} - 4 + (y + 1)^{2} - 1 = 15$
 $(x - 2)^{2} + (y + 1)^{2} = 20$

The centre C of the circle is (2, -1) and the radius is $\sqrt{20}$.

(ii) Substituting x = 4 and y = -5: $(4-2)^2 + (-5+1)^2 = 4 + 16 = 20$ so the point (4, -5) lies on the circle.

(iii)Gradient of CP = $\frac{-1 - (-5)}{2 - 4} = \frac{4}{-2} = -2$ Tangent at P is perpendicular to CP, so gradient of tangent = $\frac{1}{2}$. Equation of tangent is $y - (-5) = \frac{1}{2}(x - 4)$ 2(y + 5) = x - 4

$$2y + 10 = x - 4$$

 $2y = x - 14$

- 7. (i) Gradient of PQ = $\frac{y_1 y_2}{x_1 x_2} = \frac{-1 3}{-2 6} = \frac{-4}{-8} = \frac{1}{2}$ Gradient of QR = $\frac{y_1 - y_2}{x_1 - x_2} = \frac{3 - 2}{6 - 9} = \frac{1}{-3} = -\frac{1}{3}$ Gradient of RS = $\frac{y_1 - y_2}{x_1 - x_2} = \frac{2 - (-2)}{9 - 1} = \frac{4}{8} = \frac{1}{2}$ Gradient of SP = $\frac{y_1 - y_2}{x_1 - x_2} = \frac{-2 - (-1)}{1 - (-2)} = \frac{-1}{-3} = -\frac{1}{3}$
 - (ii) PQ is parallel to RS, and QR is parallel to SP, so the quadrilateral is a parallelogram.

(iii)
$$SR = \sqrt{(9-1)^2 + (2-(-2))^2} = \sqrt{64+16} = \sqrt{80}$$

(iv) From (i), gradient of SR = $\frac{1}{2}$ Equation of SR is $y - (-2) = \frac{1}{2}(x-1)$ 2(y+2) = x-12y+4 = x-12y = x-5

Line perpendicular to SR has gradient -2 Line L has gradient -2 and goes through (6, 3) Equation of L is y - 3 = -2(x - 6)y - 3 = -2x + 12y + 2x = 15

(v) Equation of L is y = 15 - 2xSubstituting into equation of SR gives 2(15 - 2x) = x - 5

When x = 7, $y = 15 - 2 \times \mathcal{F} = 1$ Coordinates of T are (7, 1)

(vi)

P (<u>Length</u> QT = $\sqrt{(7-6)^2 + (1-3)^2} = \sqrt{1+4} = \sqrt{5}$ Area of parallelogram = SR × QT = $\sqrt{80}\sqrt{5}$

$$=\sqrt{16}\sqrt{5}\sqrt{5}$$

8. (i) C is the midpoint of AB. $C = \left(\frac{1+\mathcal{F}}{2}, \frac{3+(-\mathfrak{l})}{2}\right) = (4, \mathfrak{l})$

(ii) Radius of circle = CA =
$$\sqrt{(4-1)^2 + (1-3)^2} = \sqrt{9+4} = \sqrt{13}$$

(iii) Equation of circle is $(x-4)^2 + (y-1)^2 = 13$

(iv) Substituting y = -5x + 8 into equation of circle: $(x-4)^2 + (-5x+8-1)^2 = 13$ $(x-4)^2 + (-5x+7)^2 = 13$ $x^2 - 8x + 16 + 25x^2 - 70x + 49 = 13$ $26x^2 - 78x + 52 = 0$ $x^2 - 3x + 2 = 0$ (x-1)(x-2) = 0 x = 1 or x = 2 x = 1 is point A, so point D is x = 2When x = 2, $y = -5 \times 2 + 8 = -2$ The coordinates of D are (2, -2)

(v) Gradient of AB =
$$\frac{3 - (-1)}{1 - 7} = \frac{4}{-6} = -\frac{2}{3}$$

Gradient of CD = $\frac{1 - (-2)}{4 - 2} = \frac{3}{2}$
Gradient of AB × gradient of CD = $-\frac{2}{3} \times \frac{3}{2} = -1$

so AB is perpendicular to CD.