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1 Solve the inequality x2 − 6x − 40 ≥ 0. [4] 

2 (i)  Express 3x2 + 12x + 7 in the form 3(x + a)2 + b. [4] 

(ii) Hence write down the equation of the line of symmetry of the curve y = 3x2 + 12x + 7. [1] 

3 (i)  Sketch the curve y = x3
. [1] 

(ii) Describe a transformation that transforms the curve y = x3 
to the curve y  = −x

3
. [2] 

(iii) The curve y x3 is translated by p units, parallel to the x-axis.  State the equation of the curve 

after it has been transformed. [2] 

 

4 Solve the equation x
6 + 26x

3 − 27 = 0. [5] 

5 (a)    Simplify 2x3 × 3x
−1

. [2] 

(b) Express 2
40 × 430 

in the form 2
n
. [2] 

(c) Express 
26 

in the form a + b 
√

3. [3] 
 

 

6 Given that f(x) = (x + 1)2(3x − 4), 

(i) express f(x) in the form ax
3 + bx

2 + cx + d, [3] 

(ii) find f
!(x), [2] 

(iii) find f!!(x). [2] 
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7 (i)  Calculate the discriminant of each of the  following: 

(a)  x
2 + 6x + 9, 

(b)   x2 − 10x + 12, 

(c)   x2    2x 5. 

[3] 
 

(ii) 

 

 

 

 

State with reasons which of the diagrams corresponds to the curve 

(a)  y = x2 + 6x + 9, 

(b)   y = x2 − 10x + 12, 

(c)   y x
2    

2x 5. 

[4] 

 

8 (i)  Describe completely the curve x2 + y2 = 25. [2] 

(ii)  Find the coordinates of the points of intersection of the curve x2 + y2 = 25 and the line 2x + y − 5 = 0. 

 

 
 

[Questions 9 and 10 are printed overleaf.] 
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to the line l  , giving your answer in the form ax + by + c = 0. [4] 

3 dx 

3 

+ + = ( ) 

9 (i)  Find the gradient of the line l
1 

which has equation 4x − 3y + 5 = 0. [1] 

(ii) Find an equation of the line l
2
, which passes through the point (1,  2) and which is perpendicular 

1 

 

The line l
1  

crosses the x-axis at P and the line l
2  

crosses the y-axis at Q. 

(iii) Find the coordinates of the mid-point of PQ. [3] 

√
a

 
 

(iv) Calculate the length of PQ, giving your answer in the form   
b  

, where a and b are integers.   [3] 

 

10 (i)  Given that y = 1x3 − 9x, find  
dy 

. [2] 
 

(ii) Find the coordinates of the stationary points on the curve y =  1x3 − 9x. [3] 

(iii) Determine whether each stationary point is a maximum point or a minimum point. [3] 

 

(iv) Given that 24x 3y 2 0 is the equation of the tangent to the curve at the point  p, q , find 

p and q. [5] 
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1 Solve the equations 

1 

(i) x3   2, [1] 

(ii)  10
t = 1, [1] 

(iii)  (y−2)
2  

= 1 
. [2] 

2 (i)  Simplify (3x + 1)2 − 2(2x − 3)2. [3] 

(ii)  Find the coefficient of x3 in the expansion  of 

(2x
3 

− 3x
2 

+ 4x − 3)(x
2 

− 2x + 1). [2] 

 
3 Given that y = 3x

5 − 
√

x + 15, find 

(i) 
dy 

, [3] 
dx 

d2y 

(ii) 
dx2 

. [2] 

 

4 (i)  Sketch the curve y 
1 

. [2] 

x2 

(ii) Hence sketch the curve y = 
( 

1  

) 
. [2] 

2 

x − 3 

(iii) Describe fully a transformation that transforms the curve y 
1

 

x2 

 
to the curve y 

2 
. [3] 

x2 

 

5 (i)  Express x
2 + 3x in the form (x + a)2 + b. [2] 

(ii) Express y2 − 4y − 11 
in the form (y + p)2 + q. [2] 

A circle has equation x2 + y2 + 3x − 4y − 11 = 0. 

(iii) Write down the coordinates of the centre of the circle. [1] 

 
(iv) Find the radius of the circle. [2] 

 
 

6 (i)  Find the coordinates of the stationary points on the curve y = x3 − 3x2  + 4. [6] 

(ii) Determine whether each stationary point is a maximum point or a  minimum point. [3] 

 

(iii) For what values of x does x3 − 3x2 + 4 increase as x increases? [2] 
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7 (i)  Solve the equation x2 − 8x + 11 = 0, giving your answers in simplified surd form. [4] 

(ii) Hence sketch the curve y x2    8x 11, labelling the points where the curve crosses the axes. 

[3] 

(iii) Solve the equation y − 8y
1 

+ 11 = 0, giving your answers in the form p ± q
√

5. [4] 

8 (i)  Given that y = x2 − 5x + 15 and 5x − y = 10, show that x2 − 10x + 25 = 0. [2] 

(ii) Find the discriminant of x2 − 10x + 25. [1] 

(iii) What can you deduce from the answer to part (ii) about the line 5x y 10  and  the curve 

y = x2 − 5x + 15? [1] 

(iv) Solve the simultaneous equations 

y = x2 − 5x + 15 and 5x − y = 10. [3] 

(v) Hence, or otherwise, find the equation of the normal to the curve y = x2 − 5x + 15 at the point 

 

9 The points A, B and C have coordinates (5,  1), (p,  7) and (8,  2) respectively. 

(i) Given that the distance between points A and B is twice the distance between points A and C, 

calculate the possible values of p. [7] 

 

(ii) Given also that the line passing through A and B has equation y 3x 14, find the coordinates 

of the mid-point of AB.   [4] 

5,  15  , giving your answer in the form ax by c, where a, b and c are integers. [4] 5,  15  , giving your answer in the form ax by c, where a, b and c are integers. [4] 
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1 The points A (1, 3) and B (4, 21) lie on the curve y = x2 + x + 1. 

(i) Find the gradient of the line AB. [2] 

 

(ii) Find the gradient of the curve y = x2 + x + 1 at the point where x = 3. [2] 

2 (i) Evaluate 27
−2

. [2] 

(ii) Express 5
√

5 in the form 5n. [1] 

(iii) Express  
1 − 

√
5  

in the form a + b
√

5. [3] 

3 (i)  Express 2x2 + 12x + 13 in the form a(x + b)2 + c. [4] 

(ii)  Solve 2x2 + 12x + 13 = 0, giving your answers in simplified surd form. [3] 

4 (i)  By expanding the brackets, show that 

(x − 4)(x − 3)(x + 1) = x
3 

− 6x
2 

+ 5x + 12. [3] 

 

(ii) Sketch the curve 

y = x3 − 6x
2 + 5x + 12, 

giving the coordinates of the points where the curve meets the axes.  Label the curve C
1
. [3] 

(iii) On the same diagram as in part (ii), sketch the  curve 

y = −x
3 + 6x

2 − 5x − 12. 

Label this curve C
2
. [2] 

 
5 Solve the inequalities 

(i)  1 < 4x − 9 < 5, [3] 

(ii)  y2 ≥ 4y + 5. [5] 

6 (i)  Solve the equation x4 − 10x2 + 25 = 0. [4] 

(ii) Given that y = 2x5 − 20
x3 + 50x + 3, find 

dy 
. [2] 

 

(iii) Hence find the number of stationary points on the curve y = 2x5 − 20
x3 + 50x + 3. [2] 
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7 (i)  Solve the simultaneous equations 

y = x2 − 5x + 4, y = x − 1. [4] 

(ii) State the number of points of intersection of the curve y = x2 − 5x + 4 and the line y = x − 1.  [1] 

(iii) Find the value of c for which the line y = x + c is a tangent to the curve y = x2 − 5x + 4. [4] 

8 A cuboid has a volume of 8 m3. The base of the cuboid is square with sides of length x metres. The 

surface area of the cuboid is A m2. 

(i) Show that A = 2x2 + 
32 

. [3] 

(ii) Find 
dA 

. [3] 
dx 

(iii) Find the value of x which gives the smallest surface area of the cuboid, justifying your answer. 

[4] 

 
 

9 The points A and B have coordinates (4,  −2) and (10,  6) respectively.  C is the mid-point of AB. Find 

(i) the coordinates of C, [2] 

(ii) the length of AC, [2] 

(iii) the equation of the circle that has AB as a diameter, [3] 

(iv) the equation of the tangent to the circle in part (iii) at the point A, giving your answer in the form 

ax by c. [5] 
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1 Express 
5 

in the form a + b
√

3, where a and b are integers. [3] 
 

 

2 Evaluate 
 

(i) 60, [1] 

(ii)  2−1 × 32
4

. [3] 

3 Solve the inequalities 

 

(i) 3(x − 5) ≤ 24, [2] 

(ii)  5x2 − 2 > 78. [3] 

 
4 Solve the equation x3 + 3x3 − 10 = 0. [5] 

5 

 

The graph of y = f(x) for −1 ≤ x ≤ 4 is shown above. 

(i) Sketch the graph of y = −f(x) for −1 ≤ x ≤ 4. [2] 

(ii) The point P (1, 1) on y = f(x) is transformed to the point Q on y = 3f(x). State the coordinates 

(iii) Describe the transformation which transforms the graph of y = f(x) to the graph of y = f(x + 2). 

 

6 (i)  Express 2x2 − 24x + 80 in the form a(x − b)2 + c. [4] 

(ii) State the equation of the line of symmetry of the curve y = 2x2 − 24x + 80. [1] 

(iii) State the equation of the tangent to the curve y = 2x
2 − 24x + 80 at its minimum point. [1] 

[2] 

of Q. [2] 
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form y = mx + c. [3] 
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7 Find 
dy 

in each of the following cases. 
dx 

(i)  y = 5x + 3 [1] 
 

(ii) y 
2

 

x2 

 

[3] 

(iii) y = (2x + 1)(5x − 7) [4] 

8 (i)  Find the coordinates of the stationary points of the curve y = 27 + 9x − 3x
2 − x3

. [6] 

(ii) Determine, in each case, whether the stationary point is a maximum or  minimum point. [3] 

 

(iii) Hence state the set of values of x for which 27 + 9x − 3x2 − x3 is an increasing function. [2] 

9 A is the point (2,  7) and B is the point (−1, −2). 

(i) Find the equation of the line through A parallel to the line y = 4x − 5, giving your answer in the 

(ii) Calculate the length of AB, giving your answer in simplified surd form. [3] 

 

(iii) Find the equation of the line which passes through the mid-point of AB and which is perpendicular 

to AB.  Give your answer in the form ax by c 0, where a, b and c are integers. [6] 

 
 

10 A circle has equation x2 + y2 + 2x − 4y − 8 = 0. 

(i) Find the centre and radius of the circle. [3] 

 

(ii) The circle passes through the point (−3, k), where k < 0.  Find the value  of k. [3] 

(iii) Find the coordinates of the points where the circle meets the line with equation x + y = 6. [6] 



June 2007 
2 

© OCR 2007 4721/01 Jun07 

 

 

= 

x 

5 

1 Simplify (2x + 5)2 − (x − 3)2, giving your answer in the form ax2 + bx + c. [3] 

2 (a)    On separate diagrams, sketch the graphs of 

(i) y 
1 

, [2] 
x 

(ii)  y = x4
. [1] 

(b)    Describe a transformation that transforms the curve y = x3 
to the curve y = 8x

3
. [2] 

3 Simplify the following, expressing each answer in the form  a
√

5. 

(i)  3
√

10 × 
√

2 [2] 

(ii)  
√

500 + 
√

125 [3] 

4 (i)  Find the discriminant of kx
2 − 4x + k in terms of k. [2] 

(ii)  The quadratic equation kx
2 − 4x + k = 0 has equal roots.  Find the possible values of k. [3] 

5 

 

The diagram shows a rectangular enclosure, with a wall forming one side. A rope, of length 20 metres, 

is used to form the remaining three sides.  The width of the enclosure is x metres. 

 

(i) Show that the enclosed area, A m2, is given  by 

A = 20x − 2x
2
. [2] 

(ii) Use differentiation to find the maximum value of A. [4] 

 
 

6 By using the substitution y = (x + 2)2
, find the real roots of the equation 

(x + 2)
4 
+ 5(x + 2)

2 
− 6 = 0. [6] 

 
7 (a)    Given that f(x) = x + 

3 
, find f �(x). [4] 

(b)    Find the gradient of the curve y = x2 at the point where x = 4. [5] 
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8 (i)  Express x2 + 8x + 15 in the form (x + a)2 − b. [3] 

(ii) Hence state the coordinates of the vertex of the curve y = x2 + 8x + 15. [2] 

(iii) Solve the inequality x
2 + 8x + 15 > 0. [4] 

9 The circle with equation x2 + y2 − 6x − k = 0 has radius 4. 

(i) Find the centre of the circle and the value of k. [4] 

The points A (3, a) and B (−1,  0) lie on the circumference of the circle, with a > 0. 

(ii) Calculate the length of AB, giving your answer in simplified surd form. [5] 

 
(iii) Find an equation for the line AB. [3] 

 
 

10 (i)  Solve the equation 3x2 − 14x − 5 = 0. [3] 

A curve has equation y = 3x
2 − 14x − 5. 

(ii) Sketch the curve, indicating the coordinates of all intercepts with the axes. [3] 

 

(iii) Find the value of c for which the line y = 4x + c is a tangent to the curve. [6] 
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3 − 

3 

√ 
7 

1 Express 
4 

in the form a + b
√

7, where a and b are integers. [3] 
 
 

2 (i)  Write down the equation of the circle with centre (0,  0) and radius 7. [1] 

(ii)  A circle with centre (3, 5) has equation x2 + y2 − 6x − 10y − 30 = 0. Find the radius of the circle. 

3 Given that 3x
2 + bx + 10 = a(x + 3)2 + c for all values of x, find the values of the constants a, b and c. 

 

 
 
 

4 Solve the equations 

(i)  10
p = 0.1, [1] 

 (ii)  ( k2)2 = 15, [3] 

 

 

25 

(iii)  t
−1 

= 1
. [2] 

 

2 

 

 
5 (i)  Sketch the curve y = x3 + 2. [2] 

(ii) Sketch the curve y = 2
√

x. 

(iii) Describe a transformation that transforms the curve y = 2
√

 x to the curve y = 3
√

 

 
[2] 

 
x. [3] 

 

Solve the equation x2 + 8x + 10 = 0, giving your answers in simplified surd form. [3] 

y-axis. [3] 

 

 

 

 

 

Find the equation of the line parallel to l which passes through the point (6, 5), giving your 

 
y = x2 + x + 1 and x + 2y = 4. [4] 

 
8 (i)  Find the coordinates of the stationary points on the curve y = x3 + x2 − x + 3. [6] 

(ii) Determine whether each stationary point is a maximum point or a minimum point. [3] 

 

[4] 
[4] 

[2] 

1 

6 (i)  

 

 (ii) Sketch the curve y = x2 + 8x + 10, giving the coordinates of the point where the curve crosses the 

  

(iii) Solve the inequality x2 + 8x + 10 ≥ 0. [2] 

 

7 

 

(i) Find the gradient of the line l which has equation x + 2y = 4. 
 

[1] 

 (ii)   

  
 

(iii) 

answer in the form ax + by + c = 0, where a, b and c are integers. 

Solve the simultaneous equations 

[3] 
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(iii) For what values of x does x3 + x2 − x + 3 decrease as x increases? [2] 
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x3 

3 

 

9 The points A and B have coordinates (−5,  −2) and (3,  1) respectively. 

(i) Find the equation of the line AB, giving your answer in the form ax + by + c = 0. [3] 

(ii) Find the coordinates of the mid-point of AB. [2] 

The point C has coordinates (−3,  4). 

(iii) Calculate the length of AC, giving your answer in simplified surd form. [3] 

 
(iv) Determine whether the line AC is perpendicular to the line BC, showing all your working. [4] 

 

10 Given that f(x) = 8x
3 +  

1 
, 

(i) find f !!(x), [5] 

(ii) solve the equation f(x)= −9. [5] 
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16 
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√ 

1 

= (  −   )(  +   )(  +   ) 

 

1 Express each of the following in the form 4n: 

(i)  
1 

, [1] 

(ii) 64, [1] 

(iii) 8. [2] 

 
 

2 (i)  The curve y x2  is translated 2 units in the positive x-direction.   Find the equation of the curve 

after it has been translated. [2] 
 

(ii)  The curve y x3     4 is reflected in  the x-axis.  Find  the equation  of the curve after it has been 

reflected.  [1] 

 

3 Express each of the following in the form k
√

2, where k is an integer: 

(i) 
√

200, [1] 

(ii)  
12 

, [1] 
2 

(iii)  5
√

8 − 3
√

2. [2] 

4 Solve the equation 2x − 7x2 + 3 = 0. [5] 

5 Find the gradient of the curve y = 8
√

x + x at the point whose x-coordinate  is 9. [5] 

6 (i)  Expand and simplify (x − 5)(x + 2)(x + 5). [3] 

(ii)  Sketch the curve y x 5  x 2  x 5  , giving the coordinates of the points where  the curve 

crosses the axes.     [3] 

 
 

7 Solve the inequalities 

(i)  8 < 3x − 2 < 11, [3] 

(ii)  y2 + 2y ≥ 0. [4] 

8 The curve y = x3 − kx2 + x − 3 has two stationary points. 

(i) Find 
dy 

. [2] 
dx 

(ii) Given that there is a stationary point when x = 1, find the value  of k. [3] 

(iii) Determine whether this stationary point is a minimum or maximum point. [2] 

 
(iv) Find the x-coordinate of the other stationary point. [3] 



© OCR 2008 4721/01 Jun08 

June 2008 
3 

 

 

( ) 

7x + y = 14. [5] 

 

9 (i)  Find the equation of the circle with radius 10 and centre  2, 1 , giving your answer in the form 

x
2 + y2 + ax + by + c = 0. [3] 

(ii) The circle passes through the point (5,  k) where k > 0.  Find the value of k in the form p + 
√

q. 

(iii) Determine, showing all working, whether the point (−3,  9) lies inside or outside the circle. [3] 

(iv) Find an equation of the tangent to the circle at the point (8, 9). [5] 

10 (i)  Express 2x2 − 6x + 11 in the form p(x + q)2 + r. [4] 

(ii) State the coordinates of the vertex of the curve y = 2x2 − 6x + 11. [2] 

(iii) Calculate the discriminant of 2x2 − 6x + 11. [2] 

(iv) State the number of real roots of the equation 2x
2 − 6x + 11 = 0. [1] 

(v) Find  the  coordinates  of the  points  of  intersection of the  curve y = 2x2 − 6x + 11  and the line 

[3] 
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√ 20 √ 
  

 
 

1 Express 
45 + √

5  
in the form k   5, where k is an integer. [3] 

 
 

2 Simplify 

(i)  (
√
3  
x )

6
, [1] 

3y
4  × (10y)3

 

(ii) . [3] 
2y5 

 
 

2 1 
  

3 Solve the equation 3x3  + x3  − 2 = 0. [5] 

 
1 

4 (i)  Sketch the curve y = 
x2 

. [2] 
 

1 

(ii) The  curve y  = 
x2

 

 

is translated by 3  units in the  negative  x-direction.   State the  equation of the 

curve after it has been translated. [2] 
 

1 

(iii) The curve y = 
x2

 

 

is stretched parallel to the y-axis with scale factor 4 and, as a result, the point 

P (1,  1) is transformed to the point Q.  State the coordinates of Q. [2] 
 

 

 

dx 
 

 

 

 

 

 

 

 

 

 

(ii) State the equation of the line of symmetry of the curve y = 5x2  + 20x − 8. [1] 

(iii) Calculate the discriminant of 5x
2  + 20x − 8. [2] 

(iv) State the number of real roots of the equation 5x2  + 20x − 8 = 0. [1] 

5 
dy 

Find in each of the following cases: 

 
(i) y = 10x−5, [2] 

 
(ii) y = 

√
4  
x, [3] 

 (iii) y = x(x + 3)(1 − 5x). [4] 

 

6 
 

(i) Express 5x2  + 20x − 8 in the form p(x + q)2 + r. 
 

[4] 
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3 2 

 

7 The line with equation 3x + 4y − 10 = 0 passes through point A (2,  1) and point B (10, k). 

(i) Find the value of k. [2] 

 
(ii) Calculate the length of AB. [2] 

 

A circle has equation (x − 6)  + (y + 2)  = 25. 

(iii) Write down the coordinates of the centre and the radius of the circle. [2] 

 
(iv) Verify that AB is a diameter of the circle. [2] 

 

 

8 (i)  Solve the equation 5 − 8x − x   = 0, giving your answers in simplified surd form. [3] 

(ii) Solve the inequality 5 − 8x − x  ≤ 0. [2] 

(iii) Sketch the curve y = (5 − 8x − x )(x + 4), giving the coordinates of the points where the curve 

crosses the coordinate axes. [5] 

 

 

9 The curve y = x + px + 2 has a stationary point when x = 4. Find the value of the constant p and 

determine whether the stationary point is a maximum or  minimum point. [7] 

 

 

10 A curve has equation y = x2  + x. 

(i) Find the gradient of the curve at the point for which x = 2. [2] 

(ii) Find the equation of the normal to the curve at the point for which x = 2, giving your answer in 

the form ax + by + c = 0, where a, b and c are integers. [4] 

(iii) Find the values of k for which the line y = kx − 4 is a tangent to the curve. [6] 
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√ + 

, 

2 2 

4 

4 

 

5 1 

1 Given that y = x   + 
x2 

, find 

(i) 
dy 

, [3] 
dx 

 

d2y 

(ii) 
dx2 

. [2] 

 

8 + 
√

7 √ 
 

 
 

2 Express in the form a b 
2 +  7 

7, where a and b are integers. [4] 

 

 

3 Express each of the following in the form 3n: 
 

(i)  
1 

[1] 
9 

(ii)  
√
3  
3, [1] 

 

(iii)  310 × 915. [2] 

 
4 Solve the simultaneous equations 

4x
2  + y2 = 10, 2x − y = 4. [6] 

 

 

 
5 (i) Expand and simplify (2x + 1)(x − 3)(x + 4). [3] 

 (ii) Find the coefficient of x4  in the expansion of  
 

x(x  + 2x + 3)(x  + 7x − 2). [2] 

 
6 (i)  Sketch the curve y = −

√
x. [2] 

(ii) Describe fully a transformation that transforms the curve y = −
√

x to the curve y = 5  − 
√

x. [2] 

(iii) The curve y = −
√

x is stretched by a scale factor of 2 parallel to the x-axis. State the equation of 

the curve after it has been stretched. [2] 

 
 

7 (i)  Express x2 − 5x + 1  
in the form (x − a)2 − b. [3] 

(ii)  Find the centre and radius of the circle with equation x2  + y2  − 5x + 1 = 0. [3] 

 
8 Solve the inequalities 

 

(i)  −35 < 6x + 7 < 1, [3] 

(ii)  3x
2 > 48. [3] 
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2 

2 

 

9 A is the point (4,  −3) and B is the point (−1, 9). 

(i) Calculate the length of AB. [2] 

 
(ii) Find the coordinates of the mid-point of AB. [2] 

 

(iii) Find the equation of the line through (1, 3) which is parallel to AB, giving your answer in the 

form ax + by + c = 0, where a, b and c are integers. [4] 

 
10 (i)  Solve the equation 9x

2  + 18x − 7 = 0. [3] 

(ii) Find the coordinates of the stationary point on the curve y = 9x   + 18x − 7. [4] 

(iii) Sketch the curve y = 9x   + 18x − 7, giving the coordinates of all intercepts with the axes. [3] 

(iv) For what values of x does 9x2  + 18x − 7 increase as x increases? [1] 

11 The point P on the curve y = k
√

x  has x-coordinate 4.   The normal to the curve at P is parallel to      

the line 2x + 3y = 0. 

(i) Find the value of k. [6] 

 
(ii) This normal meets the x-axis at the point Q. Calculate the area of the triangle OPQ, where O is 

the point (0, 0). [5] 
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B (a, a2 + 5) 

C 

A (1, 6) 

2 

2 

 

1 Express x2 − 12x + 1 in the form (x − p)2 + q. [3] 

 
 

2 
y 

 

 

 

 

 

x 

 
The graph of y = f(x) for −2 ≤ x ≤ 4 is shown above. 

 

(i) Sketch the graph of y = 2f(x) for −2 ≤ x ≤ 4 on the axes provided. [2] 

(ii) Describe the transformation which transforms the graph of y = f(x) to the graph of y = f(x − 1). 

[2] 

 

3 Find the equation of the normal to the curve y = x3 − 4x2 + 7 at the point (2, −1), giving your answer 

in the form ax + by + c = 0, where a, b and c are integers. [7] 

 
4 Solve the equations 

(i)  3m = 81, [1] 

1 

(ii)  (36p4)2  
= 24, [3] 

(iii)  5n × 5n+4 = 25. [3] 

 

5 Solve the equation x − 8
√

x + 13 = 0, giving your answers in the form p ± q
√

r, where p, q and r are 

integers. [7] 

 
 

6 
y 

Not to 
scale 

 

 

 

 

 

O x 

The diagram shows part of the curve y = x + 5. The point A has coordinates (1, 6). The point B has 

coordinates (a, a + 5), where a is a constant greater than 1. The point C is on the curve between A 

and B. 

 

(i) Find by differentiation the value of the gradient of the curve at the point A. [2] 

 

(ii) The line segment joining the points A and B has gradient 2.3. Find the value of a. [4] 

 

(iii) State a possible value for the gradient of the line segment joining the points A and C. [1] 

2 

–2 0 2 4 
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(i) Each diagram shows a quadratic curve.  State which diagram corresponds to the  curve 

(a)    y = (3 − x)2, [1] 

(b)   y = x2 + 9, [1] 

(c) y = (3 − x)(x + 3). [1] 

(ii) Give the equation of the curve which does not correspond to any of the equations in part (i).   [2] 

 
 

8 
A circle has equation x2 + y2 + 6x − 4y − 4 = 0. 

(i) Find the centre and radius of the circle. [3] 

 

(ii) Find the coordinates of the points where the circle meets the line with equation y = 3x + 4. [6] 

 
9 

Given that f(x) = 
1 

− 
√

x + 3, 

(i) find f ′(x), [3] 

(ii) find f ′′(4). [5] 

© OCR 2010 4721 Jan10 Turn   over 
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–3 O 3 

O 3 
x 

–9 
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O 3 
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10 
The quadratic equation kx2 − 30x + 25k = 0 has equal roots. Find the possible values of k. [4] 

 
11 

A lawn is to be made in the shape shown below.  The units  are metres. 
 

 
2 + x 

 

 

 
3x 

 

 

 

2 + 5x 

 

(i) The perimeter of the lawn is P m. Find P in terms of x. [2] 

 

(ii) Show that the area, A m2, of the lawn is given by A = 9x2 + 6x. [2] 

The perimeter of the lawn must be at least 39 m and the area of the lawn must be less than 99 m2. 

 
(iii) By writing down and solving appropriate inequalities, determine the set of possible values of x. 

[7] 
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1 

3 
√

5 

2 2 

 

1 (i)  Evaluate 90. [1] 

 

(ii)  Express 9
−

2  as a fraction. [2] 

 
 

1 

2 (i) Sketch the curve y = − 
x2 

. [2] 

1 

(ii) Sketch the curve y = 3 − 
x2 

. [2] 
 

1 

(iii) The curve y = − 
x2

 

 

is stretched parallel to the y-axis with scale factor 2.  State the equation of the 

transformed curve. [1] 
 

3 (i) Express 
12 

in the form a − b
√

5, where a and b are positive integers. [3] 

+ 

(ii)   Express 
√

18 − 
√

2 in simplified surd form. [2] 

 
4 (i) Expand (x − 2)2(x + 1), simplifying your answer. [3] 

(ii)   Sketch the curve y = (x − 2)2(x + 1), indicating the coordinates of all intercepts with the axes. 

[3] 

 

 

5 Find the real roots of the equation 4x4  + 3x2  − 1 = 0. [5] 

 
 

6 

6 Find the gradient of the curve y = 2x + √
x

 
at the point where x = 4. [5] 

 
 

7 Solve the simultaneous equations 

x + 2y − 6 = 0, 2x  + y  = 57. [6] 

 

8 (i) Express 2x2 + 5x in the form 2(x + p)2 + q. [3] 

(ii) State the coordinates of the minimum point of the curve y  = 2x2  + 5x. [2] 

(iii) State the equation of the normal to the curve at  its minimum point. [1] 

 

(iv) Solve the inequality 2x2 + 5x > 0. [4] 
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9 (i) The line joining the points A (4, 5) and B (p, q) has mid-point M (−1, 3). Find p and q. [3] 

AB is the diameter of a circle. 

 
(ii) Find the radius of the circle. [2] 

 

(iii) Find the equation of the circle, giving your answer in the form x2  + y2  + ax + by + c = 0. [3] 

(iv) Find an equation of the tangent to the circle  at the point (4, 5). [5] 

 
10 (i) Find the coordinates of the stationary points of the curve y = 2x3 + 5x2 − 4x. [6] 

(ii) State the set of values for x for which 2x3  + 5x2  − 4x is a decreasing function. [2] 

(iii) Show that the equation of the tangent to the curve at the point where x = 1  is 10x − 4y − 7  = 0. 

[4] 

 

(iv) Hence, with the aid of a sketch, show that the equation 2x3 + 5x2 − 4x = 5x − 7  has two distinct 

real roots. [2] 


